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Abstract

Global demands for agricultural and forestry products provide economic incentives for defor-

estation across the tropics. Much of this deforestation occurs with a lack of information on

the spatial distribution of benefits and costs of deforestation. To inform global sustainable

land-use policies, we combine geographic information systems (GIS) with a meta-analysis

of ecosystem services (ES) studies to perform a spatially explicit analysis of the trade-offs

between agricultural benefits, carbon emissions, and losses of multiple ecosystem services

because of tropical deforestation from 2000 to 2012. Even though the value of ecosystem

services presents large inherent uncertainties, we find a pattern supporting the argument

that the externalities of destroying tropical forests are greater than the current direct eco-

nomic benefits derived from agriculture in all cases bar one: when yield and rent potentials

of high-value crops could be realized in the future. Our analysis identifies the Atlantic Forest,

areas around the Gulf of Guinea, and Thailand as areas where agricultural conversion

appears economically efficient, indicating a major impediment to the long-term financial sus-

tainability of Reducing Emissions from Deforestation and forest Degradation (REDD+)

schemes in those countries. By contrast, Latin America, insular Southeast Asia, and Mada-

gascar present areas with low agricultural rents (ARs) and high values in carbon stocks and

ES, suggesting that they are economically viable conservation targets. Our study helps

identify optimal areas for conservation and agriculture together with their associated uncer-

tainties, which could enhance the efficiency and sustainability of pantropical land-use poli-

cies and help direct future research efforts.

Author summary

Tropical forests are often destroyed to clear land for agriculture or to harvest forestry

products, such as timber. However, the benefits derived from agriculture and these prod-

ucts are countered by the costs to the environment and the loss of ecosystem systems (the

benefits that nature provides to humans). Little is known about how the economic benefits

and costs of deforestation vary on a global scale. Knowing the distribution of benefits and

costs would help identify regions where deforestation is most and least beneficial and thus
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could help select areas to focus conservation efforts. We studied the trade-offs between

agricultural benefits, carbon emissions, and losses of multiple ecosystem services (ES) in

tropical deforested areas around the world. We find large differences between costs and

benefits globally. For instance, we identify the Atlantic Forest, areas around the Gulf of

Guinea, and Thailand as areas where the benefits from agricultural conversion are greater

than environmental costs, which could make it difficult to incentivize and implement bio-

diversity conservation strategies that are based on payments to farmers. By contrast, Latin

America, insular Southeast Asia, and Madagascar represent areas with low agricultural

benefits and high environmental costs. This suggests that these regions are economically

viable conservation targets. Our study helps identify strategies to enhance the sustainabil-

ity of land-use policies in the tropics.

Introduction

Growing global demands for food and biofuels generate pressures for deforestation across the

tropics [1]. Much of this deforestation is carried out without information on the spatial distri-

bution of benefits and costs of deforestation [2]. Studies estimating the trade-offs between the

economic value of multiple forest ecosystem services (ES) and agricultural conversion have

been largely constrained to local and national case studies [3–7]. On the other hand, increas-

ingly detailed, spatially explicit analyses of the global trade-offs between biodiversity and car-

bon emissions [8–12] and between carbon emissions and agricultural production [13,14] have

been produced. Analyses that combine both approaches to analyse the economic trade-offs

between agriculture and multiple tropical forests’ ES at the global level are, however, lacking.

Identifying the spatial distribution of trade-offs between economic net losses and gains result-

ing from deforestation is important as it can help identify optimal areas for conservation and

agriculture, thus informing pantropical land-use policies.

Availability of spatial datasets on tropical deforestation [15], agricultural crop distributions

[16], and potential yields [17] and economic values of ES in tropical forests [18] presents a

unique opportunity to comprehensively evaluate the contemporary and future economic

trade-offs and inefficiencies between carbon emissions, multiple ES, and agricultural conver-

sion linked to tropical deforestation.

Here we present a spatially explicit analysis using deforestation and crop distribution data

for the period of 2000–2012 [15]. We compared agricultural benefits to both foregone avoided

carbon emissions values and lost ES by developing a spatially explicit meta-analysis of the total

economic value of ES in tropical forests (Materials and methods). By overlaying the estimates

of carbon emissions and ES values onto spatial analyses of land-use change and agricultural

rents (ARs), we quantified the net economic trade-offs and inefficiencies associated with tropi-

cal deforestation. We accounted for uncertainty using bootstrapping, Monte Carlo simulation

methods, and different scenarios (Materials and methods). Scenario A presents net agricultural

rents of national crops (i.e., assuming that crops replacing forests can stochastically be those

already existing within the country and deducting production costs); scenario C presents net

agricultural rents of the economically highest potential crop for that cell (among the top 10

crops in terms of area and production value in the tropics when considering their potential

yields, observed prices, and costs and ignoring know-how and cultural and infrastructure limi-

tations; see Materials and methods), deducting production costs; and scenarios B and D are

respectively similar to A and C except that production costs are not deducted. Scenarios A and

B are designed to represent the contemporary deforestation scenario that makes an attempt to
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capture a more realistic agricultural expansion (see Materials and methods for an evaluation of

the plausibility of these scenarios). Scenarios C and D are designed to emulate the hypothetical

conversion of land into the highest-rent crops in the long term as a response to increasing

global agricultural demand.

Results

Our meta-analysis of ES identified 3 top models with high support (S1 Table and S1 Fig in Sup-

porting information). The results pointed towards the influence of valuation method and type

of ES (although not statistically significant in the case of type of ES) on the value of ES. We

found a positive relationship of value with temperature and negative with year of publication

and bird species richness (S1 Fig). These models presented an improvement of predictive accu-

racy of 43%–49% with regards to direct benefits transfer at the global and regional levels (S1

Table) and predictive versus observed regression slopes of 0.879–0.884 (S2 Fig). The dataset

was also representative of the tropical forest biome (S2 Table). The predictions from the ES

meta-analytic model presented, however, a wide range of uncertainty (Figs 1 and 2; its uncer-

tainty is described in S3 and S4 Figs).

Although the results are spatially explicit and present large levels of heterogeneity across

space (Fig 2), to help dissect the findings, we present first results aggregated at the global,

regional, and national scales before describing specific spatial heterogeneities. Under scenar-

ios A and B in which a forest is replaced with crops already present in the country, the global

annual net and gross agricultural benefits were on average I$32,000,000,000 (95% uncer-

tainty range [UR] = I$19–I$47,000,000,000/year, Scenario A) and I$53,000,000,000 (UR = I

Fig 1. Comparison (2000–2012) of the annual agricultural value gained on deforested land versus

externalities consisting of carbon emission and lost ecosystem services (ES) value. AGRA, AGRB,

AGRC, AGRD: median agricultural rents generated under scenarios A, B, C, and D respectively. CO2m and

CO2s: median value of carbon emissions at market and social price levels, respectively. TEV: total ecosystem

service value. TEVm and TEVs: median value of TEV including carbon emissions at market and social price

levels, respectively. Error bars indicate the 2.5th and 97.5th percentiles of the uncertainty distribution of

outcomes. Dotted horizontal lines denote the median of carbon emissions externalities under market and

social prices.

https://doi.org/10.1371/journal.pbio.2001657.g001
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$35–I$72,000,000,000/year, Scenario B). Under the scenarios in which a forest was replaced

by crops with the highest potential rents, the net and gross annual values increased substan-

tially to I$209,000,000,000/year (UR = I$103–I$339,000,000,000/year, Scenario B) and I

$271,000,000,000 (UR = I$164–I$403,000,000,000/year, Fig 1).

Annual externalities only related to carbon emissions were on average I$24,000,000,000

(UR = I$22–I$35,000,000,000/year) at market prices and I$50,000,000,000 (UR = I$22–I

$129,000,000,000/year) at social prices (Fig 1, S5 and S6 Figs, Materials and methods). How-

ever, when total ES value (TEV) (that includes the value of carbon emissions) is considered,

annual externalities increased to I$107,000,000,000 (UR = I$85–I$146,000,000,000/year at

market prices) and I$135,000,000,000 (UR = I$93–I$224,000,000,000/year at social prices).

Thus, at the aggregate (global) level, agricultural expansion under scenarios A and B provided

on average a net benefit only when compared with the value of carbon at market prices. In

comparison with all other ES valuations, agricultural expansion under scenarios A and B

resulted on average in net losses (although the uncertainty ranges of scenarios A and B over-

lapped with the lower uncertainty bound of carbon emissions under social prices). Under a

hypothetical future scenario in which all crops that replaced deforestation presented maximum

Fig 2. The economic implications of deforestation in tropical forests from 2000 to 2012. Comparison of carbon emissions

assessed at market prices plus loss of ecosystem services (ES) values minus gains of agricultural rents. Replacement of land by

those crops in the tropical forest biome already present in the country is assumed (Scenario A). The median values of the simulations

are shown. Maps corresponding to the 2.5th and 97.5th percentiles of the uncertainty distribution of outcomes are available in S3 and

S4 Figs.

https://doi.org/10.1371/journal.pbio.2001657.g002
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rents, median annual agricultural rents exceeded on average the value of externalities because

of carbon emissions, regardless of pricing, as well as TEV (Fig 1).

The distribution of trade-offs varied substantially between countries (Fig 3, S7, S8 and S9

Figs).

Countries like Brazil, Indonesia, Peru, and Nicaragua presented high contemporary net

losses under scenarios A and B but the capacity to obtain net gains if maximum rent crops

were realized in scenarios C and D, pointing towards low production costs relative to further

gains from intensive cash crops such as soybean, oil palm, maize, and sugar cane (Fig 3, S7, S8

and S9 Figs). In contrast to most countries, several countries presented large differences

between scenarios C and D, suggesting high production costs that would hinder intensive cash

crops expansion. In this group were countries like Malaysia, Panama, Argentina, Paraguay,

and Australia (Fig 3, S7, S8 and S9 Figs).

When considering the spatial distribution of losses under scenario A, a large heterogeneity

was present within and between countries, showing where agricultural conversion was eco-

nomically efficient and areas where it was inefficient (Fig 2, S3 and S4 Figs).

Net losses of total ES occurred on average in most of South America (except the Atlantic

Forest), Madagascar, the Philippines, centre and northern parts of Borneo, Papua, and Indo-

china, excluding parts of Thailand and Malaysia. Conversely, net gains occurred in western

tropical Africa, around the Gulf of Guinea and the eastern part of the Congo Basin, Thailand,

parts of Sumatra, the Atlantic Forest, and areas in Bolivia and Peru (Fig 2, S3 and S4 Figs show

the large heterogeneity of these results across space). The areas with large ES losses (Fig 2)

were largely in agreement with areas where carbon emissions out-competed agriculture when

considered alone under social prices, with the exception of areas such as Southeast Asia and

Madagascar, which presented also net losses (S10 and S11 Figs). The maps of net gains from

agricultural conversion presented large uncertainty towards higher ES values: the 2.5th percen-

tile map resembled the 50th percentile map, but the 97.5th percentile map showed a majority

of net losses from agricultural conversion under scenarios A and B (Fig 2, S3, S4, S12, S13 and

S14 Figs). By contrast, under scenario C, most agricultural conversion presented net gains

under the 2.5th and 50th percentile maps (S15 and S16 Figs) except areas such as Latin Amer-

ica, Congo Basin, Papua and north of Borneo under the 97.5th percentile map (S17 Fig),

highlighting the difficulty to meet future agricultural opportunity costs in extensive areas

using ES and carbon emissions alone.

Our analyses to evaluate the plausibility of the scenarios considered showed that scenarios

A and B are plausible given the spatial contagion of crop expansion illustrated by oil palm

expansion in Southeast Asia (S18 Fig; relationship between distance from existing plantation

and new oil palm conversion β = –0.06, p-value< 0.01) and that we could only find 24 new

crop–country combinations (out of the 2,903 considered) with either missing area information

or 0 area reported during the period of study (S3 Table).

Discussion

Our analysis reveals large spatial heterogeneity in net losses or gains from the agricultural con-

version of tropical forests across subnational to global scales.

Deforestation in Latin America (except the Atlantic Forest) was in general identified to gen-

erate net losses because of low agricultural rents—i.e., if carbon emissions and ES values were

internalized in the planning of individuals and corporations, these are not viable regions for

conversion to agriculture under present conditions—and relatively high carbon emissions and

ES values. These results were largely robust to uncertainty under scenario A (Fig 2, S3 and S4

Figs). By contrast, Southeast Asia (mostly north of Sumatra, Thailand and the Malayan
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Fig 3. Annual per-country net benefits of converting tropical forests to agriculture for the years 2000–

2012 compared to total ecosystem services value (TEV) losses. This figure shows the result of deducting

cubic root–transformed agricultural rents (ARs) of the crops replacing forests under 4 different scenarios (A,

B, C, and D with corresponding agricultural rents AR1, AR2, AR3, and AR4) to the cubic root TEV based on

the market price of carbon (TEVm)—i.e., TEV1/3 –AR1/3. Error bars indicate the 2.5th and 97.5th percentiles of

the uncertainty distribution of outcomes.

https://doi.org/10.1371/journal.pbio.2001657.g003
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Peninsula) were identified to generate net agricultural gains and to be a less preferred target

for conservation interventions such as REDD+ investments. However, these results were sus-

ceptible to uncertainty (net losses of ES because of agricultural conservation occur as well for

the 97.5th percentile map, S4 Fig). The identification of these regions agrees with previous

studies evaluating the optimal allocation of REDD+ funds [8]. Our results also agree with

global trade-off analyses indicating the high agricultural yields in Southeast Asia versus low

yields in the Neotropics and Afrotropics [13], corroborating a crop advantage over carbon in

Southeast Asia [14]. In general, our results show good agreement with the identification of

areas where agriculture generates net gains in Thailand, the border of India and Nepal, and the

Malayan Peninsula [14]. Our analyses, by incorporating the economic dimension beyond

yields alone, further suggests that agricultural rents in Southeast Asia are able to surpass the

value of carbon emissions, suggesting that high agricultural rents and thus conservation

opportunity costs could compromise the viability of REDD+ projects in SE Asia [19],

although, yet again, these results are subject to uncertainty in the upper-level value of ES.

Our analyses do not include trade-offs with biodiversity. Factoring biodiversity may mean,

however, that conservation funds would need to be invested in Southeast Asia [8,9], which

hosts 4 biodiversity hotspots and combines high levels of endemism and threat. This highlights

a strong trade-off between agricultural rents and ES with biodiversity in Sumatra and the

Malayan Peninsula. This corroborates also the ES–biodiversity negative trade-off found by the

ES meta-analytic models: high economic value of ES requires high density of beneficiaries,

while high levels of biodiversity require, by contrast, low levels of disturbance and hence less

beneficiaries [20]. This trade-off, although pervasive, is not necessarily dominating across all

the tropics, as it can still be modulated by agricultural opportunity costs. For instance, because

of low agricultural rents, and with high robustness to uncertainty under scenario A, we identi-

fied highly biodiverse areas with high potential for species extinctions such as the Philippines,

Borneo and Madagascar as net losers from agricultural conversion, showing them as economi-

cally viable conservation targets.

We identified 2 different dynamic interpretations of the trade-offs between agriculture and

forests depending on whether contemporary and hypothetical maximum rent crop conversion

were considered. Under contemporary conversion, deforestation produced net negative global

externalities from 2000–2012 when the crops present in each country replaced forests, a realis-

tic scenario given that existing local crops reflect cultural and labour constraints (e.g., labour

constraints make the adoption of oil palm in countries like Brazil unlikely), and there is high

spatial autocorrelation inherent to agricultural land use [21] (S17 Fig). Our analysis of time

series of crop areas further confirms the plausibility of scenarios A and B. These net losses are

likely to be even more negative than we report because the analyses assumed that all conver-

sion resulted in immediate and sustained productive agriculture and did not incorporate esti-

mates of degraded land resulting from agricultural abandonment, such as Imperata grasslands

in Southeast Asia [22]. On the other hand, crops at the contemporary deforestation frontiers

are expected to evolve towards higher-rent crops with better yields and economies of scale.

Under these intensification scenarios in which the highest rent crop is adopted, agricultural

rents surpass the externalities of carbon emissions and combined ES with very few exceptions.

This points towards pantropical runaway costs for conservation [23] that will be very difficult

to match under current carbon prices in the long term. It should be noted, however, that the

value of ES can also change in space and time [24] and would be expected to increase as tropi-

cal forests become more scarce [25]. Similarly, the social price of CO2 increases through time

as the impacts of climate change unfold and the gross domestic product (GDP) increases [26].

Our current analysis is, however, done using the CO2 prices from the period of study. Future

research would thus need to update the changing value in ES, CO2, and agricultural rents.

Inefficiency of tropical deforestation
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Our analyses have several limitations. We compounded several datasets and analyses that

required uncertainty propagation through modelling. Although we dealt with this problem

using bootstrapping and Monte Carlo simulation methods, a research priority would be to

reduce data paucity on ES valuation studies (so that individual models for each ES can be cre-

ated) and the location of crops replacing forests, which would substantially reduce the uncer-

tainty attached to our results. Although the cross-validation analysis and comparison with

direct benefit transfer suggest that our ES meta-analysis is a step forward compared to direct

benefit transfer and assumptions of constant ES values per biome across space, the results

related to the ES meta-analysis should be contemplated while bearing in mind the limitations

associated to the dataset. Although the uncertainty in the predictions of the ES models was

considered, the individual studies from The Economics of Ecosystems and Biodiversity

(TEEB) dataset that were used to develop the meta-analytic models present themselves inher-

ent inaccuracies and uncertainties that cannot be captured by bootstrapping or cross-valida-

tion of the ES models. Estimating the value of ES is very challenging as value depends, in a

complex manner on the social, ecological, and economic context of the location (e.g., flood

protection values will depend on the hydrological characteristics of the catchment and the

communities that can be affected by the flood). Although we attempted to capture the contex-

tual realities as much as possible statistically, there is no guarantee that all the variables influ-

encing value were included in the meta-analytic models or that the variables we used had

sufficient resolution to capture the nuanced socioecological dynamics that shape values in

each specific location. As such, we highlight that there is potential for wide error in the values

of ES used for analysis and that these errors may have escaped our treatment of uncertainty. In

this respect, the trade-off maps between CO2 and agricultural rents present higher confidence

than those between TEV and agricultural rents, making it essential that future work strives at

generating and synthetizing further ES valuation studies. Because of data paucity, we did not

estimate net externalities from agriculture, which is conservative given that agricultural activi-

ties tend to generate negative externalities (e.g., water pollution, increased flooding, and green-

house emissions) that are greater in magnitude than the positive externalities (landscape

aesthetic values, waste sink) [27]. Our analyses were also static and did not consider market

feedbacks through international trade. Market feedbacks can modify agricultural rents in the

region where land use occurs and can indirectly modify distant lands through land displace-

ment [28]. For instance, drastic intensification or expansion of oil palm would lead to increases

in supply that could cause prices to drop, presumably preventing further oil palm expansion

elsewhere [29,30]. Further research is needed to understand the role of global market feed-

backs on conservation [31]. Another inherent trade-off with the global scale of our analyses is

that our results are aggregate in nature and fail to incorporate the necessities of the actual

actors behind deforestation. Our maps are thus only intended to support global-scale analyses

and should not be used for local decision-making. Our analyses would need to be comple-

mented with on-the-ground, context-dependent studies to evaluate the actual distribution of

winners and losers from agricultural conversion. We also note that although economic valua-

tion of ES is fundamental to support land-use planning, valuation of ES is ultimately only 1

decision tool for policy makers. Reliance on economic valuation alone may not lead to the

optimal conservation outcomes [32], and other criteria such as biodiversity and social equity

would be needed to support conservation programs.

Other limitations because of data paucity were that our estimates of the carbon fraction of

biomass were based on a constant conversion factor [33,34]. In reality, wood density is variable

across tree species. Future work on carbon emissions estimation would benefit from combin-

ing datasets of wood density per species [35] and tree species maps that could be generated

with future developments of airborne imaging spectroscopy [36]. Another limitation is that we
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could not find pantropical maps of peatland depths and resorted to using depth measures

from peatlands in Indonesia [37] as a surrogate. The discovery of tropical peatlands and esti-

mation of their depth is currently ongoing. For instance, one of the largest peat swamp forests

(145,500 km2) was recently discovered in the Cuvette Centrale depression in the central

Congo Basin, on the border of the Republic of the Congo with the Democratic Republic of the

Congo [38]. Considering the large potential carbon emissions of its conversion would change

our results in the areas of the Cuvette Centrale depression (confluence of the rivers Congo and

Ubangi) corresponding to the Democratic Republic of Congo from small net losses from agri-

cultural conversion (Fig 2) to large net losses. Our results could thus be refined when global

maps of peatland depth become available.

Our results are helpful in that they help map the uncertainty associated to agriculture–ES

trade-offs that can be used to motivate further research in the tropics, areas that receive com-

paratively much lower research efforts [39]. These results could also help identify the tropical

trade-offs between carbon emissions, multiple ES, and agricultural rents. These maps can be

used as a starting point to devise spatially efficient conservation and agricultural development

policies aimed at internalizing the value of ES. Three main groups of policy interventions

(namely regulations and community-based and economic instruments) have been imple-

mented with varied outcomes [40]. Among regulations, the “polluter pays” principle, condi-

tioning production subsidies on environmental performance, and interventions directed at the

supply chain (e.g., removal of farmer credits was effective at slowing down deforestation in

Brazil [41]) could be considered to guarantee provision of multiple ES. Among economic

instruments, and besides REDD+, taxes on agricultural inputs, taxes on consumption, and

agri-environmental schemes—which are widely implemented in high-income regions like the

European Union—could also be considered in the tropics. Agri-environmental schemes could

be considered as flexible interventions to promote activities that enhance provision of ES at

the local scale [40]. As a drawback, agri-environmental schemes are costly to implement and

to monitor, which may not be viable in low-income settings. In this respect, our results can

help identify the largest ES value–agricultural rent differentials as areas where their potential

economic viability is highest. Another limitation is that all these interventions could displace

production elsewhere through indirect feedbacks and rebound effects. Land-use zoning, certi-

fication, and spatial strategic deployment of agricultural innovations could be considered to

prevent rebound effects and displacement [42].

Although knowing the spatial distribution of trade-offs and their large associated uncer-

tainty is still a long way from identifying the most effective policies to internalize ES losses into

agricultural production, the developed maps can be useful to support evidence-informed spa-

tial policies and to identify areas of high-potential agricultural rents where potential rebound

effects could occur. Considering these policies is imperative; the alternative is a spatially ineffi-

cient agricultural conversion of tropical forests at the expense of the loss of valuable ES and

biodiversity.

Materials and methods

Analyses overview and scope

We obtained spatial information on the distribution and magnitude of loss of tropical rainfor-

ests from 2000 to 2012 [15]. On these deforestation maps, we overlaid data on the distribution

and of current and potential yields of major commercial crops, pastures, and livestock density

[16,17,43] and developed meta-analytic models of ESs and estimates of carbon emissions.

These meta-analytic models are an update of Carrasco et al. [20] in which we increased the

time resolution of the explanatory variables, used information theory and switched to mixed-
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effects models without variance structures to allow bootstrapping of the models. Potential

yields have been determined using a rain-fed land productivity and a water-balance model

combined with soil moisture and temperature radiation information integrated in a crop

growth model [17].

The combination of these analyses yielded a pantropical spatial map of cells for the distribu-

tion of tropical forest loss, the distribution of agricultural rents generated, ESs lost, and carbon

emitted. Bootstrapping and Monte Carlo simulations were used to estimate uncertainty in

these maps.

We restricted our analysis to the 51 countries where deforestation was detected from 2000

to 2005 [44] (Fig 3). The spatial extent of the analysis was the tropical forest biome in which we

used a grid of 0.1˚ resolution, leading to 159,458 map cells analysed. These analyses were done

using the R environment, and ArcGIS version 10.2.1 was used to develop all the maps.

Economic impacts: Carbon emissions

We estimated the carbon dioxide emitted from deforestation because of losses in carbon

aboveground, belowground, and stored in dead organic matter because of conversion from

forests to agriculture. Given the large uncertainty on its estimates in the literature [45], carbon

stored in the soil was conservatively assumed to remain the same from the transition from for-

est into agriculture. We did, however, consider the carbon emitted if peat soil was converted to

agriculture. Geographic information systems (GIS) maps of biomass above and belowground

stored in forests was obtained from Ruesch and Gibbs [46]. Biomass was expressed as carbon

tonnes per hectare content using a carbon fraction of biomass [33,34]. Tables 2.2 and 2.3 in

IPCC [34] were used to estimate the amount of carbon stored in soil and dead organic matter

in tropical forests. Carbon in soil within peat swamps was corrected considering the distribu-

tion of peat swamps, and because of data paucity, depth was estimated from peat swamps in

Indonesia [37,47]. All carbon estimates were expressed as tonnes of carbon dioxide per hect-

are. We employed 2 carbon price scenarios: (i) market prices (US$13.6/tC), the average of the

market prices per tonne of carbon from August 2011 to October 2016 using the price of Cali-

fornia Carbon Allowance Futures [48]; and (ii) social prices (average of US$30/tC), based on

the White House estimates published in the year 2016 referring to the year 2010 using a dis-

count rate of 3% under 5 different socioeconomic emissions scenarios of the Dynamic Inte-

grated Climate-Economy model (DICE) [26].

Economic losses: Total economic value of ES

Challenges when performing benefit transfer of ES. Creating maps of ES values is chal-

lenging because of the scarcity of ES valuation estimates. Benefit transfer methods are used to

extrapolate from known studies to other locations based on similarities with spatial covariates.

Benefit transfer is, however, challenging because the valuation method, presence of agents that

will benefit from the service, level of supply of the service, time of analysis, and contextual vari-

ables describing the socioecological system that vary across space can influence the value of the

ES and need to be controlled for [49]. GIS and statistical spatial metamodels that account for

these factors can reduce these caveats [50]. One way to ascertain the reliability of the benefit

transfer is to compare the distributions of the explanatory variables within the meta-analysis

dataset and the entire tropical biome [51]. We thus verified that the ES dataset used was repre-

sentative of the tropical forest biome (S2 Table, [20]).

Data collection. We considered all ESs classified by TEEB [18] but excluded supporting

services to avoid double counting [52]. We selected the valuation studies from the TEEB data-

set that were conducted on tropical forests—arguably the most comprehensive quality-verified
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ES valuation dataset. To ensure that observations were independent we only kept studies that

were not based on benefit transfer. We excluded studies without a specific location (e.g., stud-

ies at the national or regional level were excluded). We also excluded studies that did not iden-

tify values for specific ESs and did not report specific valuation methods (i.e., studies reporting

TEVs were not considered). We homogenized the currency to international dollars of 2016.

All currencies were expressed per unit of area and year. To do that we used the area of the for-

est and information on discounting rates from each study to annualize values. Studies not

reporting the area of forest were inputted as 0 by TEEB, and we excluded studies that reported

net present values but did not provide discount rates or time horizons. This led to a total of 30

studies and 78 observations (S1 Data).

Variables. Variables were chosen to explain the variance because of the type of study and

how environmental and socio-economic conditions changed across space. We also accounted

for sources of nonindependence in the data. We employed 3 sets of predictors. The first con-

sidered the characteristics of the study such as ES type, whether the study was peer reviewed,

and the year it was published. The second group included variables describing how environ-

mental and socio-economic factors varied spatially. These included mean temperature and

precipitation [53] to control for their effect on ecosystem function, accessibility (quantified as

time to travel to the nearest city of at least 50,000 habitants to control for reachability to the ES

of those benefitting from them) [54], number of habitants per unit of area [55], altitude [53],

spatially explicit GDP [56], forest area (to control for supply level of ES), whether the location

was within a protected area [57], species richness of birds, amphibians, small mammals, and

vascular plants [58] that were included to control for their effect on ecosystem function, and

carbon density as a surrogate for forest type [46]. We used country as a random effect to

account for sources of nonindependence and variables such as corruption and sociopolitical

and institutional factors distributed at the country level. For predictors such as density of habi-

tants and spatially explicit GDP for which different maps were available across time, we chose

the maps closest to the year of the study. Most of the predictors were selected based on existing

theory and their capacity to influence the economic values of ES. Some variables, however, are

surrogates of other variables for which there is not information. For instance, climatic and spe-

cies richness predictors act as surrogates of ecosystem function. Density of carbon is a surro-

gate for forest type (e.g. primary versus secondary).

Statistical analyses. The mathematical description of the models is:

logðvalueiÞ ¼ aþ
XJ

1

bjXji þ ac þ εi where cm � Nð0; s2
1Þ; εi � Nð0; s2Þ

where valuei is the dependent variable, the observation of the ES value i; i corresponds to each

observation in the dataset (i.e., an estimation of the economic value of a specific ES in a specific

location [the dataset is available in S1 Data]); α is the intercept; βj is the regression coefficient

for the J predictors describing the type of study, environmental and socioeconomic context

(Xji); ac is the random intercept for country c. ac is assumed to follow a normal distribution

with mean 0 and variance σ1
2; and ε is the error term.

To evaluate collinearity, we initially fitted a linear regression with the main effects of the

variables. We used variance inflation factors and evaluated departures from the assumption of

homoscedasticity by visually evaluating graphs of the residuals versus fitted values and graphs

of residuals versus each of the predictors and by using a Breusch–Pagan test from the library

car in R on an equivalent linear model with country as a fixed effect. The model presented

multicollinearity as a result of the small number of observations per ES type and valuation

method [20]. To solve this we clustered these two variables in groups. ES types were now
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coded as cultural, provisioning, and regulating and valuation method was coded as cost-

based, stated preference, and revealed preference [20]. We assessed whether there were prob-

lems of spatial autocorrelation using semivariograms of model residuals. We also tried to

model spatial autocorrelation using the mean distance between observations as a random

slope [60], but this did not improve the fit. S19 Fig shows the semivariograms of models’ resid-

uals where no problems of spatial autocorrelation were observed; AIC of the models attempt-

ing and not attempting to account for spatial autocorrelation through the random slope were

431 and 429, respectively.

Because multiple alternative mechanisms could be at play in the determination of ES value,

we used an information theoretic approach considering 256 models [61] with the dredge func-

tion in the R package MuMIn [62]. The proposed models were constructed using the predic-

tors as main effects and country as random intercept. The models were fitted using the

package lme4 [63]. After the models were fitted, we performed model selection based on the

AIC corrected for small sample size (AICc). We used 2 AICc units of difference with the best

model as a cut-off for models with high support [61]. The models that met that cut-off were

averaged together and further assessed with regards to the assumptions of homoscedasticity

and normality in the distribution of the residuals. We did not observe problems of heterosce-

dasticity (Breusch–Pagan test p-values of 0.17, 0.25, and 0.29 in the top supported models) and

nonnormality.

Model predictions. We carried out 3 sets of predictions in each cell in the map for the 3

valuation types and then averaged the predictions. We used GIS to obtain information from

each predictor in each location of the map. Some predictor variables in the dataset did not

have equivalent spatial information (year of publication and area of forest). In these cases we

kept them fixed in their mean values while making predictions. Only the fixed-effects part of

the model was used to make predictions in countries for which a random effect could not be

estimated from the dataset. The predictions for each type of ES for each cell where then aggre-

gated into: 5 types of provisioning services, 7 types of regulating services, and 5 types of cul-

tural services from the TEEB dataset while excluding 1 regulating service to avoid double

counting with the estimates of carbon emissions. Each of the three selected models was used to

make predictions for each cell and these were combined as a weighted average using the

weights of each model (S1 Table).

Model cross-validation and predictive accuracy. Models fitted to small datasets risk

being dominated by single observations or overfitted, making them unreliable when used to

make predictions for new data not used to build the model. Given that this concern applies to

our ES meta-analytic models, we performed leave-one-out cross-validation: 1 observation was

excluded at a time, the models were fitted to the remaining observations, and the fitted model

was used to predict the excluded observation. This process was repeated for all observations.

We assessed the predictive accuracy of the models by estimating the mean absolute percentage

error. To benchmark the predictive accuracy of the models, we compared how they performed

against a direct benefit transfer approach in which predictions were based solely on the average

value of ES across studies in the dataset for each ES group and the tropical forest biome, thus

ignoring spatial heterogeneity. We distinguished between global direct benefit transfer (that

pooled all the observations per ES type) and regional direct benefit transfer (that calculated

means of ES values per ES type and region).

To further assess model accuracy, we performed predicted versus observed regressions that

were forced through the origin (S2 Fig).

Costs of operationalizing ES value internalization. Conservatively, we considered also

the costs of a hypothetical internalization of the estimated value of ES. For the value of ES to be

internalized by the market, payment for ES programs were assumed. These programs need to
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meet the opportunity costs of agriculture (see the section Economic benefits: Value of net reve-

nues from agriculture) but also incur transaction and implementation costs. To account for

transaction and implementation costs, we used as a framework the Juma project in Brazil, a

program with sufficient documentation and Gold-level REDD+ status [64]. To be able to

transform socioeconomic and labour cost realities different to Brazil, we expressed the prepa-

ration, administration, community support, protected area management, law enforcement,

and monitoring costs per hectare and year into the person-hours required. We then used the

wages in the different countries to adjust the cost categories accordingly [65] (S2 Data). These

costs were deducted from the value of ES in each cell.

Economic benefits: Value of net revenues from agriculture

To estimate the revenues generated by agricultural conversion we selected the top 10 crops in

terms of area and value of production in tropical countries [66]. Since some crops appeared in

both groups we were left with 18 crops. We added cattle production to the list of crops that

were [66]: banana, bean, cassava, cocoa, coconut, coffee, cotton, cowpea, groundnut, maize,

millet, oil palm, rice, rubber, sorghum, soybean, sugar cane, and wheat. Additionally, we

accounted for the benefits of selling logged timber from deforestation prior to agricultural pro-

duction. Benefits of sales of timber after land conversion were estimated by multiplying the

proportion of growing stock in commercial species by the total growing stock in each region

[67], then multiplying by the national export price per unit of volume [66] (final values per

hectare are shown in S2 Data).

The available global crop maps corresponded to the period around the year 2000. Given

this limitation we could not link specific crops to deforestation using the maps. Given this

uncertainty, we estimated agricultural benefits under 2 broad scenarios. First, under scenarios

A and B, we replaced converted forests with the crops already found in the country using

Monte Carlo techniques that sampled crops at random from all the deforested cells in the

country. Scenarios A and B are meant to represent the status quo by taking into account poten-

tially both smallholder and industrial agricultural activities within each country. These scenar-

ios imply that forest replacement is only possible for crops that have proven to be viable in the

country in the past and that agricultural activities are more similar the closer they are in space

[21]. They also invoke the requirement of know-how and infrastructure (e.g., mills and high

levels of labour inputs in the case of oil palm) for each crop. We nonetheless further evaluated

the plausibility of scenarios A and B following 2 approaches. First, we used a spatially explicit

dataset of oil palm expansion in Southeast Asia [68,69]. If scenarios A and B were plausible, we

would expect to see that new oil palm conversion occurred in the vicinity of existing oil palm

plantations. We evaluated this with a model that used distance from existing plantations in

2010 as prediction of new oil palm plantations in 2014 using a generalized least-squares model.

Second, we evaluated the time series of crop areas of all crops grown in the countries studied

from 2000 to 2014. We evaluated whether crops not present in the countries in previous years

started to be grown anew during the time series. Under our assumptions for scenarios A and

B, the emergence of new crops would be unlikely over the period of study.

A second set of scenarios C and D replaced converted forest with the crop providing the

highest potential rent for each cell (i.e., industrial and cash crops that involve transport costs to

the market). This scenario relaxes the assumption that only national existing crops can replace

forests and represents a hypothetical future scenario in which specific crop know-how and

infrastructures are available in every cell and country. Scenarios A and B therefore present for-

ests replaced by the expansion of national cropping systems with (A) and without (B) produc-

tion costs (labour and fertilizer); scenarios C and D present forests replaced by the crop with
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the highest potential rent with (C) and without (D) production costs (labour, fertilizer, and

transport costs). We derived transport costs using existing maps of travelling times to the near-

est city [54], driver salaries (using agricultural wages when available and if not, manufacturing

wages) [65] and fuel prices in each country for the year 2000 [70] (S2 Data shows the wages

and fuel prices used). We assumed a standard truck capacity of 18 m3 and an average speed of

45 km/h and calculated the corresponding fuel consumption [71]. We further assumed that

the truck returned empty after delivering the produce and only 1 driver was involved. Spatially

explicit information on capital costs was however missing and we could not include these in

the analysis. Labour costs were estimated by obtaining standard estimates of person-days per

hectare and year to produce each crop in the tropics from literature review (S2 Data shows the

estimated person-days and the sources for each crop) and then multiplying by the agricultural

wages in each country whenever available and, if not, multiplying by the manufacturing wages

[65]. Person-days estimates were coarse, as it was not possible to identify different estimates

per crop and country combinations. These limitations motivated scenarios B and D that did

not deduct production costs to estimate the boundaries of the uncertainty caused by produc-

tion costs. We derived global maps of fertilizer costs using maps of fertilizer usage [72] and

later multiplying them by the average price of fertilizer in each country from the years 2000 to

2002 [66] (S2 Data).

Conservatively, total and immediate conversion from deforestation into agricultural activi-

ties was assumed. The annual net rents from agriculture (AR) in each cell i were calculated as:

ARi ¼ yuipu � cui

where u represents the crop assumed to occupy each deforested cell i under A to D scenarios;

yui represents the yield of crop u in cell i; pu is the farm gate price of the crop in each country

per year and ton, averaged from 2000 to 2009 if available for specific countries [66] and using

neighbouring countries of comparable level of development if no data were available for spe-

cific crop–country combinations (S2 Data); and cui is the production costs of crop u that

include transport, fertilizer, and labour costs as described above depending on the scenario

considered. To calculate rents from cattle we estimated average national carcass efficiencies

[66,73] that were later combined with global pasture maps [47] and the number of cattle per

unit of area [43]. We used 2016 international dollars to express all economic values.

Quantifying net economic impacts

We combined our estimates of carbon emissions and ES losses with agricultural rents, assum-

ing that they represented the marginal cost of deforestation in relation to the marginal benefits

of alternative land uses [3]. We assumed that the remaining tropical forest area, after the mar-

ginal deforestation, was far from the threshold for which ES can no longer be provided, leading

to a spike in value. Under this assumption, the annual economic impact, I, can be approxi-

mated by the following equation:

I ¼
Xn

i

½ðTEVi � ARiÞAi�

where TEV is the value of the externalities because of carbon emissions (annualized using a

discount rate of 5% and a 100 years’ time horizon) and annual ES losses and AR represents net

benefits from logging (annualized using a similar discount rate and time period) plus annual

rents from agriculture of converting the area deforested A in cell i.
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Analysis of uncertainty

Our analysis involved the combination of several spatial datasets and analyses with inherent

uncertainty on their own. The combination of individual sources of uncertainty may lead to a

greater uncertainty in the estimates than individual uncertainties alone. There was thus a need

to explicitly model each source of uncertainty and to propagate this uncertainty to estimate

what was the combined uncertainty generated by the analyses. As noted, we used several sce-

narios and sampled at random from agricultural fields to account for uncertainty in produc-

tion costs and the distribution of crops replacing forests. We further dealt with uncertainty

using bootstrapping methods in the case of the meta-analytic models of ES. We then employed

uncertainty distributions to take into account uncertainty in the crop prices, the carbon prices,

and the deforestation maps. Monte Carlo simulation methods were then used to sample 200

times from each source of uncertainty to generate uncertainty distributions of potential out-

comes for each cell of the map.

Specifically, we bootstrapped each of the 3 selected ES models to evaluate their predictive

uncertainty using the function bootMer from the lme4 package [63]. We carried out 500 boot-

straps that involved resampling the dataset, fitting the model again and producing predictions

for each type of ES in the map at a 0.1˚ resolution across the global tropical forest biome. As a

result, a distribution (n = 500) of ES lost annually in each cell in the map was obtained (i.e.,

500 different maps of total ES values). Among these 500 maps, 1 map was chosen at random

each time the model was run.

The uncertainty in the deforestation maps was modelled by modifying the original dataset

stochastically to reflect 87% and 99.7% accuracy in the classification of forest loss and no loss

in the tropics [15] (i.e., each cell classified as forest lost had a probability of 0.87 of remaining

as forest loss and 0.13 of being changed to not forest loss in each run). Maps of forest loss were

modified stochastically according to these probabilities every time the model was run.

To account for the uncertainty in market prices of carbon, we considered the daily time

series of prices from August of 2011 to September of 2016. The time series was sampled at ran-

dom every time the model was run, and the sampled value used as the market price of carbon.

For the social price of carbon, we considered 1,000 observations per each of the 5 modelling

scenarios considered and sampled at random among these 5,000 values to select the social

price of carbon each time the model was run. For agricultural prices, we estimated the stan-

dard deviation of the prices for each crop–country combination from 2000 to 2009. We then

constructed normal distributions using the mean and standard deviations of the observed

prices. The normal distributions were sampled each time the model was run. The final combi-

nation of uncertainty sampling using Monte Carlo methods led to a distribution of model out-

comes. 2.5th and 97th percentiles of the distributions of outputs generated were estimated and

used to generate uncertainty ranges of the results.

Supporting information

S1 Fig. Final meta-analytic model resulting from conditional averaging of the top 3 mod-

els. “Provisioning” and “Regulating” are levels of ecosystem services types compared against

cultural services. “Revealed preference” and “Stated preference” are levels of valuation methods

and compared against cost-based valuation methods.

(TIF)

S2 Fig. Predicted versus observed linear regressions for the top 3 models obtained through

information theory. Predictions were generated based on a leave-one-out cross-validation

procedure. β denotes the slope of the regression and R2 represents the proportion of the
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variance explained by the regression.

(TIF)

S3 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario A (AR1). Values at the 2.5th percentile of the

simulations are shown.

(TIF)

S4 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario A (AR1). Values at the 97.5th percentile of the

simulations are shown.

(TIF)

S5 Fig. Spatial distribution of the value of CO2 emissions from deforestation from 2000–

2012 under market prices. Median values of the simulations are shown.

(TIF)

S6 Fig. Spatial distribution of the value of CO2 emissions from deforestation from 2000–

2012 under social prices. Median values of the simulations are shown.

(TIF)

S7 Fig. Annual per-country net benefits and losses of converting tropical forests to agricul-

ture for the years 2000–2012 compared to total ecosystem services losses. This figure shows

the result of deducting agricultural rents (AR) from the crops replacing forests under 4 differ-

ent scenarios (A, B, C, and D with corresponding agricultural rents AR1, AR2, AR3, and AR4)

to the total ecosystem value based on the social price of carbon (TEVs). Error bars indicate the

2.5th and 97.5th percentiles of the uncertainty distribution of outcomes.

(TIF)

S8 Fig. Annual per-country net benefits and losses of converting tropical forests to agricul-

ture for the years 2000–2012 compared to carbon emissions. This figure shows the result of

deducting agricultural rents (AR) from the crops replacing forests under 4 different scenarios

(A, B, C, and D with corresponding agricultural rents AR1, AR2, AR3, and AR4) to the total

value of CO2 emissions under market prices (CO2m). Error bars indicate the 2.5th and 97.5th

percentiles of the uncertainty distribution of outcomes.

(TIF)

S9 Fig. Annual per-country net benefits and losses of converting tropical forests to agricul-

ture for the years 2000–2012 compared to carbon emissions. This figure shows the result of

deducting agricultural rents (AR) from the crops replacing forests under 4 different scenarios

(A, B, C, and D with corresponding agricultural rents AR1, AR2, AR3, and AR4) to the total

value of CO2 emissions under social prices (CO2s). Error bars indicate the 2.5th and 97.5th

percentiles of the uncertainty distribution of outcomes.

(TIF)

S10 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at social prices minus gains of agricultural rents

under scenario A (AR1). The median values of the simulations are shown.

(TIF)
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S11 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at social prices minus gains of agricultural rents

under scenario B (AR2). The median values of the simulations are shown.

(TIF)

S12 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario B (AR2). Values at the 2.5th percentile of the

simulations are shown.

(TIF)

S13 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm) minus

gains of agricultural rents under scenario B (AR2). Median values of the simulations are shown.

(TIF)

S14 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario B (AR2). Values at the 97.5th percentile of the

simulations are shown.

(TIF)

S15 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario C (AR3). Values at the 2.5th percentile of the

simulations are shown.

(TIF)

S16 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario C (AR3). Median values of the simulations

are shown.

(TIF)

S17 Fig. The economic implications of deforestation in tropical forests from 2000 to 2012.

Comparison of carbon emissions assessed at market prices plus loss of ES values (TEVm)

minus gains of agricultural rents under scenario C (AR3). Values at the 97.5th percentile of the

simulations are shown.

(TIF)

S18 Fig. Oil palm expansion in insular Southeast Asia from 2010 (A) to 2014 (B). New oil

palm conversions are typically in the vicinity of existing plantations. A generalized least-squares

model of new conversion as a function of distance from plantation in 2010 presented a coeffi-

cient of –0.06 (p-value< 0.01), showing that occurrence of new conversion decreased with dis-

tance from existing plantations. Data from Miettienen et al. [74] were used to build the map.

(TIF)

S19 Fig. Semivariograms of top 3 ES meta-analytic models with highest support. Nonin-

creasing semivariance with distance denotes no problems of spatial autocorrelation in the

residuals of the models. Top left, top right, bottom left: first, second, and third most supported

models.

(TIF)
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S1 Table. Composition of the top meta-analytic models and their predictive errors. These

models presented less than 2 small sample-size corrected Akaike information criterion (AICc)

units of difference from the model with lowest AICc (AIC0). The predictive error (PE) was mea-

sured as the mean absolute predictive error. The comparisons with direct benefit transfer meth-

ods indicate changes in PE showing that the meta-analytic model causes reductions of error.

(XLSX)

S2 Table. Representativeness of the TEEB database of tropical forests for the variables

used in the meta-analytic model. PA: protected area status IUCN categories. perc.: percentile.

(XLSX)

S3 Table. Country-crop combinations that emerged (out of 2,903 combinations) as new

during the period from 2000 to 2014 in FAOSTAT [66] for all the countries considered in

the study. Area information was either missing or 0.

(XLSX)

S1 Data. Data used for the construction of the ecosystem services meta-analytic models.

(XLSX)

S2 Data. Economic parameters and inputs used in the analysis. Economic values are

expressed in I$ of 2016. Person-days per crop include the studies used as source. Every crop

presents farm gate prices from FAOSTAT except rubber, for which international prices were

employed because of data paucity. Prices for countries not growing the commodity were set as 0.

(XLSX)

Author Contributions

Conceptualization: Luis R. Carrasco, Lian P. Koh, Navjot S. Sodhi.

Data curation: Luis R. Carrasco, William S. Symes.

Formal analysis: Luis R. Carrasco.

Funding acquisition: Luis R. Carrasco.

Investigation: Luis R. Carrasco.

Methodology: Luis R. Carrasco.

Project administration: Luis R. Carrasco, Navjot S. Sodhi.

Resources: Luis R. Carrasco, William S. Symes, Lian P. Koh, Navjot S. Sodhi.

Software: Luis R. Carrasco.

Supervision: Luis R. Carrasco, Navjot S. Sodhi.

Validation: Luis R. Carrasco, Edward L. Webb, Lian P. Koh.

Visualization: Luis R. Carrasco.

Writing – original draft: Luis R. Carrasco, Lian P. Koh, Navjot S. Sodhi.

Writing – review & editing: Luis R. Carrasco, Edward L. Webb, William S. Symes.

References
1. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, et al. Tropical forests were

the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Acad-

emy of Sciences. 2010; 107(38):16732–7. https://doi.org/10.1073/pnas.0910275107 PMID: 20807750

Inefficiency of tropical deforestation

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001657 July 21, 2017 18 / 22

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001657.s020
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001657.s021
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001657.s022
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001657.s023
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001657.s024
https://doi.org/10.1073/pnas.0910275107
http://www.ncbi.nlm.nih.gov/pubmed/20807750
https://doi.org/10.1371/journal.pbio.2001657


2. Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, et al. A global strategy

for road building. Nature. 2014; 513:(7517)229–232. https://doi.org/10.1038/nature13717 PMID:

25162528

3. Balmford A, Bruner A, Cooper P, Costanza R, Farber S, Green RE, et al. Economic Reasons for Con-

serving Wild Nature. Science. 2002; 297(5583):950–3. https://doi.org/10.1126/science.1073947 PMID:

12169718

4. Kremen C, Niles JO, Dalton MG, Daily GC, Ehrlich PR, Fay JP, et al. Economic incentives for rain forest

conservation across scales. Science. 2000; 288(5472):1828–32. ISI:000087503800051. PMID:

10846165

5. Law EA, Bryan BA, Meijaard E, Mallawaarachchi T, Struebig M, Wilson KA. Ecosystem services from a

degraded peatland of Central Kalimantan: implications for policy, planning, and management. Ecologi-

cal Applications. 2015; 25(1):70–87. PMID: 26255358

6. Gilroy JJ, Woodcock P, Edwards FA, Wheeler C, Baptiste BL, Uribe CAM, et al. Cheap carbon and bio-

diversity co-benefits from forest regeneration in a hotspot of endemism. Nature Climate Change. 2014;

4(6):503–7.

7. Eigenbrod F, Anderson BJ, Armsworth PR, Heinemeyer A, Jackson SF, Parnell M, et al. Ecosystem

service benefits of contrasting conservation strategies in a human-dominated region. Proceedings of

the Royal Society of London B: Biological Sciences. 2009; 276(1669):2903–11.

8. Venter O, Laurance WF, Iwamura T, Wilson KA, Fuller RA, Possingham HP. Harnessing carbon pay-

ments to protect biodiversity. Science. 2009; 326(5958):1368-. https://doi.org/10.1126/science.

1180289 PMID: 19965752

9. Strassburg BB, Kelly A, Balmford A, Davies RG, Gibbs HK, Lovett A, et al. Global congruence of carbon

storage and biodiversity in terrestrial ecosystems. Conservation Letters. 2010; 3(2):98–105.

10. Strassburg BB, Rodrigues AS, Gusti M, Balmford A, Fritz S, Obersteiner M, et al. Impacts of incentives

to reduce emissions from deforestation on global species extinctions. Nature Climate Change. 2012; 2

(5):350–5.

11. Busch J, Godoy F, Turner WR, Harvey CA. Biodiversity co-benefits of reducing emissions from defores-

tation under alternative reference levels and levels of finance. Conservation Letters. 2011; 4(2):101–15.

12. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, et al. Global mapping of ecosystem

services and conservation priorities. Proceedings of the National Academy of Sciences. 2008; 105

(28):9495–500.

13. West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, et al. Trading carbon for food:

Global comparison of carbon stocks vs. crop yields on agricultural land. Proceedings of the National

Academy of Sciences. 2010; 107(46):19645–8.

14. Johnson JA, Runge CF, Senauer B, Foley J, Polasky S. Global agriculture and carbon trade-offs. Pro-

ceedings of the National Academy of Sciences. 2014; 111(34):12342–7.

15. Hansen M, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, et al. High-resolution global

maps of 21st-century forest cover change. Science. 2013; 342(6160):850–3. https://doi.org/10.1126/

science.1244693 PMID: 24233722

16. Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas,

yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles.

2008; 22(1):GB1022. https://doi.org/10.1029/2007gb002947

17. International Institute for Applied Systems Analysis. GAEZ v3.0 Global Agro-ecological Zones. IIASA.

http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/. 2014. Accessed 8 December 2016.

18. de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, et al. Global estimates of the

value of ecosystems and their services in monetary units. Ecosystem Services. 2012; 1(1):50–61.

19. Fisher B, Edwards DP, Giam X, Wilcove DS. The high costs of conserving Southeast Asia’s lowland

rainforests. Frontiers in Ecology and the Environment. 2011; 9:329–34. https://doi.org/10.1890/100079

20. Carrasco LR, Nghiem TPL, Sunderland T, Koh LP. Economic valuation of ecosystem services fails to

capture biodiversity value of tropical forests. Biological Conservation. 2014; 178(0):163–70. http://dx.

doi.org/10.1016/j.biocon.2014.08.007.

21. Overmars KP, de Koning GHJ, Veldkamp A. Spatial autocorrelation in multi-scale land use models.

Ecological Modelling. 2003; 164(2–3):257–70. http://dx.doi.org/10.1016/S0304-3800(03)00070-X.

22. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of

changing biodiversity. Nature. 2000; 405(6783):234–42. https://doi.org/10.1038/35012241 PMID:

10821284

23. Phelps J, Carrasco LR, Webb EL, Koh LP, Pascual U. Agricultural intensification escalates future con-

servation costs. Proceedings of the National Academy of Sciences. 2013; 110(19):7601–7606 https://

doi.org/10.1073/pnas.1220070110 PMID: 23589860

Inefficiency of tropical deforestation

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001657 July 21, 2017 19 / 22

https://doi.org/10.1038/nature13717
http://www.ncbi.nlm.nih.gov/pubmed/25162528
https://doi.org/10.1126/science.1073947
http://www.ncbi.nlm.nih.gov/pubmed/12169718
http://www.ncbi.nlm.nih.gov/pubmed/10846165
http://www.ncbi.nlm.nih.gov/pubmed/26255358
https://doi.org/10.1126/science.1180289
https://doi.org/10.1126/science.1180289
http://www.ncbi.nlm.nih.gov/pubmed/19965752
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
https://doi.org/10.1029/2007gb002947
http://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/
https://doi.org/10.1890/100079
http://dx.doi.org/10.1016/j.biocon.2014.08.007
http://dx.doi.org/10.1016/j.biocon.2014.08.007
http://dx.doi.org/10.1016/S0304-3800(03)00070-X
https://doi.org/10.1038/35012241
http://www.ncbi.nlm.nih.gov/pubmed/10821284
https://doi.org/10.1073/pnas.1220070110
https://doi.org/10.1073/pnas.1220070110
http://www.ncbi.nlm.nih.gov/pubmed/23589860
https://doi.org/10.1371/journal.pbio.2001657


24. Renard D, Rhemtulla JM, Bennett EM. Historical dynamics in ecosystem service bundles. Proceedings

of the National Academy of Sciences. 2015; 112(43):13411–6.

25. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, et al. Changes in the

global value of ecosystem services. Global Environmental Change. 2014; 26:152–8. http://dx.doi.org/

10.1016/j.gloenvcha.2014.04.002.

26. United States Government. Technical Update of the Social Cost of Carbon for Regulatory Impact Analy-

sis Interagency—Under Executive Order 12866. Working Group on Social Cost of Greenhouse Gases.

https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf. 2016.

Accessed 13 June 2017.

27. McVittie A, Moran D, Thomson S, Economy L. A review of literature on the value of public goods from

agriculture and the production impacts of the single farm payment scheme. Report prepared for the

Scottish Government’s Rural & Environment Research & Analysis Directorate (RERAD/004/09), Land

Economy and Environment Research Group, Scottish Agricultural College. http://www.oecd.org/

agriculture/44733980.pdf. 2009. Accessed 13 June 2017.

28. Lim FKS, Carrasco LR, McHardy J, Edwards DP. Perverse Market Outcomes from Biodiversity Conser-

vation Interventions. Conservation Letters. 2016. E-pub ahead of print. https://doi.org/10.1111/conl.

12332

29. Carrasco L, Larrosa C, Milner-Gulland E, Edwards D. A double-edged sword for tropical forests. Sci-

ence. 2014; 346(6205):38–40. https://doi.org/10.1126/science.1256685 PMID: 25278600

30. Villoria NB, Golub A, Byerlee D, Stevenson J. Will yield improvements on the forest frontier reduce

greenhouse gas emissions? A global analysis of oil palm. Am J Agr Econ. 2013; 95(5):1301–8.

31. Larrosa C, Carrasco LR, Milner-Gulland E. Unintended Feedbacks: Challenges and Opportunities for

Improving Conservation Effectiveness. Conservation Letters. 2016; 9(5):316–26.

32. Adams W. The value of valuing nature. Science. 2014; 346(6209):549–51. https://doi.org/10.1126/

science.1255997 PMID: 25359952

33. Feldpausch TR, Rondon MA, Fernandes ECM, Riha SJ, Wandelli E. Carbon and nutrient accumulation

in secondary forests regenerating on pastures in central Amazonia. Ecological Applications. 2004; 14

(sp4):164–76.

34. IPCC. Volume 4: Agriculture, Forestry and Other Land Uses (AFOLU). 2006 The Intergovernmental

Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. IPCC/IGES,

Hayama, Japan. 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.

pdf. Accessed 13 June 2017.

35. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood eco-

nomics spectrum. Ecology Letters. 2009; 12(4):351–66. https://doi.org/10.1111/j.1461-0248.2009.

01285.x PMID: 19243406

36. Baldeck CA, Asner GP, Martin RE, Anderson CB, Knapp DE, Kellner JR, et al. Operational Tree Spe-

cies Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. PLoS ONE. 2015;

10(7):e0118403. https://doi.org/10.1371/journal.pone.0118403 PMID: 26153693

37. Page SE, Rieley J, ShotykØ, Weiss D. Interdependence of peat and vegetation in a tropical peat

swamp forest. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences.

1999; 354(1391):1885–97. https://doi.org/10.1098/rstb.1999.0529 PMID: 11605630

38. Dargie GC, Lewis SL, Lawson IT, Mitchard ET, Page SE, Bocko YE, et al. Age, extent and carbon stor-

age of the central Congo Basin peatland complex. Nature. 2017; 542(7639):86–90. https://doi.org/10.

1038/nature21048 PMID: 28077869

39. Wilson KA, Auerbach NA, Sam K, Magini AG, Moss ASL, Langhans SD, et al. Conservation Research

Is Not Happening Where It Is Most Needed. PLoS Biol. 2016; 14(3):e1002413. https://doi.org/10.1371/

journal.pbio.1002413 PMID: 27023288

40. Tanentzap AJ, Lamb A, Walker S, Farmer A. Resolving Conflicts between Agriculture and the Natural

Environment. PLoS Biol. 2015; 13(9):e1002242. https://doi.org/10.1371/journal.pbio.1002242 PMID:

26351851

41. Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, et al. Slowing Amazon deforesta-

tion through public policy and interventions in beef and soy supply chains. Science. 2014; 344

(6188):1118–23. https://doi.org/10.1126/science.1248525 PMID: 24904156

42. Phalan B, Green RE, Dicks LV, Dotta G, Feniuk C, Lamb A, et al. How can higher-yield farming help to

spare nature? Science. 2016; 351(6272):450–1. https://doi.org/10.1126/science.aad0055 PMID:

26823413

43. FAO. Livestock densities. Gridded Livestock of the World (GLW). Food and Agriculture Organization of

the United Nations. Animal Production and Health. http://www.fao.org/ag/againfo/resources/en/glw/

glw_dens.html. 2014. Accessed 8 December 2016.

Inefficiency of tropical deforestation

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001657 July 21, 2017 20 / 22

http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_2016.pdf
http://www.oecd.org/agriculture/44733980.pdf
http://www.oecd.org/agriculture/44733980.pdf
https://doi.org/10.1111/conl.12332
https://doi.org/10.1111/conl.12332
https://doi.org/10.1126/science.1256685
http://www.ncbi.nlm.nih.gov/pubmed/25278600
https://doi.org/10.1126/science.1255997
https://doi.org/10.1126/science.1255997
http://www.ncbi.nlm.nih.gov/pubmed/25359952
http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.pdf
http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.pdf
https://doi.org/10.1111/j.1461-0248.2009.01285.x
https://doi.org/10.1111/j.1461-0248.2009.01285.x
http://www.ncbi.nlm.nih.gov/pubmed/19243406
https://doi.org/10.1371/journal.pone.0118403
http://www.ncbi.nlm.nih.gov/pubmed/26153693
https://doi.org/10.1098/rstb.1999.0529
http://www.ncbi.nlm.nih.gov/pubmed/11605630
https://doi.org/10.1038/nature21048
https://doi.org/10.1038/nature21048
http://www.ncbi.nlm.nih.gov/pubmed/28077869
https://doi.org/10.1371/journal.pbio.1002413
https://doi.org/10.1371/journal.pbio.1002413
http://www.ncbi.nlm.nih.gov/pubmed/27023288
https://doi.org/10.1371/journal.pbio.1002242
http://www.ncbi.nlm.nih.gov/pubmed/26351851
https://doi.org/10.1126/science.1248525
http://www.ncbi.nlm.nih.gov/pubmed/24904156
https://doi.org/10.1126/science.aad0055
http://www.ncbi.nlm.nih.gov/pubmed/26823413
http://www.fao.org/ag/againfo/resources/en/glw/glw_dens.html
http://www.fao.org/ag/againfo/resources/en/glw/glw_dens.html
https://doi.org/10.1371/journal.pbio.2001657


44. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, et al. Humid tropi-

cal forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely

sensed data. Proceedings of the National Academy of Sciences. 2008; 105(27):9439–44. https://doi.

org/10.1073/pnas.0804042105 PMID: 18591652

45. Powers JS, Corre MD, Twine TE, Veldkamp E. Geographic bias of field observations of soil carbon

stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National

Academy of Sciences. 2011; 108(15):6318–22.

46. Ruesch A, Gibbs HK. New IPCC Tier-1 global biomass carbon map for the year 2000. Carbon Dioxide

Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, Tennessee http://

cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html. 2008. Accessed 13 June 2017.
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