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Aix Marseille Université, Agroparc BP61207, Avignon 84911 cedex 9, France
2Gembloux Agro-Bio Tech, Biodiversity and Landscape unit, University of Liege, Gembloux 5030, Belgium
3Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Botânica, Lab of Vegetation Ecology, Av. 24A, 1515, Rio

Claro, SP 13506-900, Brazil
4Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-901, Brazil
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ABSTRACT

Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and
restore biodiverse tropical grasslands (including savannas and open-canopy grassy woodlands) remains limited. To
incorporate grasslands into large-scale restoration efforts, we synthesised existing ecological knowledge of tropical
grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient
to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native
megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human-caused exogenous
disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface
mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management
targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions,
or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous
ground cover), but species-diverse plant communities, including endemic species, are slow to recover. Complicating
plant-community restoration efforts, many tropical grassland species, particularly those that invest in underground
storage organs, are difficult to propagate and re-establish. To guide restoration decisions, we draw on the old-growth
grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to
propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1)
old-growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance
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of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old-growth state;
and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state)
or the socioecological context preclude a return to historical conditions.

Key words: forest and landscape restoration, invasive species, prescribed fire, rangeland management, secondary
grassland, tropical grassy biomes, woody encroachment.
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I. INTRODUCTION

Grasslands, broadly defined, including savannas with
scattered trees and open-canopy grassy woodlands, cover
approximately 52 million km2, approximately 40% of
global land surface (White, Murray & Rohweder, 2000;
Gibson, 2009; Dixon et al., 2014), and approximately 20%
of the tropics (Parr et al., 2014; Bond, 2016). Across
the globe, and particularly in the humid tropics and
subtropics, ancient and biodiverse grassland ecosystems have
long been misinterpreted as early successional vegetation,
formed by human-caused deforestation (Bond & Parr,
2010; Joshi, Sankaran & Ratnam, 2018). In light of such
misinterpretations, it is increasingly clear that to achieve
biodiversity conservation goals, ecologists, environmental
policymakers, and ecosystem managers should clearly
distinguish old-growth grasslands (Veldman et al., 2015a)
from the low-diversity grass-dominated vegetation that is
created by humans (i.e. planted pastures, derived savannas;
Veldman, 2016).

Old-growth grasslands are ancient grassy ecosystems char-
acterised by species-diverse herbaceous plant communities
that are maintained by frequent fires, megafaunal herbivores,
and edaphic factors that limit tree growth (Veldman et al.,
2015a). Old-growth grasslands occur worldwide, but those
that occur in the humid tropics and subtropics (henceforth

‘tropical old-growth grasslands’) warrant particular con-
servation attention (Parr et al., 2014). Tropical old-growth
grasslands exhibit exceptional biodiversity, including high
species richness and endemism, and provide important
ecosystem services, including belowground carbon storage,
soil stabilisation, ground and surface water recharge, for-
age production for domestic livestock and native game
animals, and habitat for native charismatic and endan-
gered animals [e.g. elephant, Loxodonta africana and bison,
Bison bison (Fuhlendorf et al., 2009; Resende, Fernandes
& Coelho, 2013; Parr et al., 2014; Hempson, Archibald
& Bond, 2015; Veldman et al., 2015a,b; Bond, 2016;
Abreu et al., 2017)].

During the past century, while the global area of
human-created grass-dominated vegetation increased (due
to forest clearing), the world’s old-growth grasslands
dramatically declined due to land-use change. The decline
in old-growth grasslands has been caused by widespread
agricultural conversion, afforestation, and forest expansion,
as well as mining and urbanisation (White et al., 2000;
Nosetto, Jobbagy & Paruelo, 2005; Lark, Salmon & Gibbs,
2015; Noss et al., 2015; Veldman et al., 2015b). Moreover,
many remaining old-growth grasslands are being degraded
by altered fire regimes (i.e. changes to the historical
frequency, intensity, and seasonality of fire), invasive species,
overgrazing, loss of native megafauna, liming, nitrogen
deposition, and elevated atmospheric carbon dioxide, which
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promotes grassland encroachment by woody plants (White
et al., 2000; Weigl & Knowles, 2014; Bond, 2016; Stevens
et al., 2016).

Our knowledge of tropical old-growth grassland resilience
(i.e. resistance to degradation and capacity for recovery;
Hodgson, McDonald & Hosken, 2015) and restoration (i.e.
intentional activities that initiate or accelerate the recovery
of an ecosystem; SER Working Group, 2004) remains
limited relative to our knowledge of temperate grasslands.
In many temperate regions, grassland conservation values
are well recognised (Leopold, 1949; Packard, Mutel &
Jordan, 2005; Silva et al., 2008; Bond & Parr, 2010),
grassland resilience has been extensively studied (Grime et al.,
2000; Jentsch et al., 2011), and grassland restoration efforts
are widely promoted (Gibson, 2009). Consequently, many
effective techniques to restore temperate grasslands have
been developed (Perrow & Davy, 2002; Jordan, 2005; Kiehl
et al., 2010; Freudenberger & Gibson-Roy, 2011; Török et al.,
2011; Aronson, 2013; Marshall, Williams & Morgan, 2015).
By contrast, recognition of the conservation values of tropical
old-growth grasslands has only emerged recently (Overbeck
et al., 2007, 2013, 2015; Bond & Parr, 2010; Laurance
et al., 2011; Parr et al., 2014; Fernandes, 2016; Lehmann
& Parr, 2016; Ratnam et al., 2016; Silveira et al., 2016), or
where concern has existed, conservation emphasis has been
placed on the management of populations of charismatic
animals (African megafauna) or agricultural conversion (e.g.
Ratter, Ribeiro & Bridgewater, 1997), rather than ecosystem
restoration (but see Fernandes, 2016; Strassburg et al., 2017).

Further contributing to a lack of grassland restoration
research, conservation agendas for the tropics have largely
focused on forests (Overbeck et al., 2015; Searchinger et al.,
2015; Bond, 2016; Veldman, 2016). Indeed, a key motivation
for this review is to clarify, in light of the Forest and
Landscape Restoration movement (e.g. Chazdon et al., 2017),
that ecological restoration of tropical grasslands rarely
involves planting trees, suppressing fire, excluding large
herbivores, or applying soil fertilizers – i.e. the suite of
forest-restoration strategies that are commonly misapplied
to tropical old-growth grasslands (Ratnam et al., 2016; e.g.
Gonçalves et al., 2013; Reis et al., 2016). We specifically
aim to provide policymakers and practitioners with basic
information on the kinds of activities (e.g. prescribed fire,
tree cutting) that should be incorporated into large-scale
restoration planning, as a means to conserve and restore
biodiverse tropical grasslands.

To demonstrate the need for such information, in
August 2017, we searched Restoration Ecology, the primary
international ecology journal focused on restoration research
[using the search function of Wiley Online Library (Wiley,
2017)] for the terms ‘‘tropical grassland’’, ‘‘subtropical
grassland’’, and savannah AND tropic* in the title, key
words, or abstract of articles published from 1993 to 2017.
The search returned 14 articles, of which only eight were
relevant to grassland restoration (see online Appendix S1,
Table S1 in File S1). The same search using the term
‘‘tropical forest’’ yielded 109 articles. As further evidence

that tropical grassland restoration research is lacking, the
Global Partnership on Forest and Landscape Restoration
(GPFLR, 2016), perhaps the most influential consortium of
institutions promoting large-scale restoration in the tropics,
offers very little information on restoration strategies for
savannas and grasslands. Clearly, there is a great need to
better integrate theoretical knowledge of tropical grassland
ecology with management practice to conserve and restore
these ecosystems.

This is not to say that conservationists have completely
ignored tropical grasslands, indeed some tropical old-growth
grasslands are recognised for their biodiversity and have
elicited conservation concern (Strassburg et al., 2017). For
example, the grasslands of the Cerrado (Brazil), tropical
Andes, and mountains of eastern Africa are recognised
as biodiversity hotspots – i.e. regions of high conservation
priority, based on high diversity and endemism as well
as a high proportion of land conversion (Mittermeier
et al., 2011). Still, many other diverse and threatened
tropical grasslands are not classified as biodiversity hotspots
and receive little conservation attention. Examples of
under-recognised grasslands include: Southern African
Montane Grasslands, Guianan Lowland Grasslands and
Savannas (Mittermeier et al., 2011; Dixon et al., 2014),
Southern Central Africa edaphic grasslands (Faucon et al.,
2016), subtropical grasslands of southern Brazil (Overbeck
et al., 2007), subtropical savannas of North America (Noss
et al., 2015), and savannas of India and southeast Asia
(Ratnam et al., 2016). Unfortunately, even with better
recognition, we should not expect classification of more
grasslands as biodiversity hotspots to halt conversion for
agriculture (Machado et al., 2004; Carvalho, De Marco &
Ferreira, 2009) or prevent forest expansion (e.g. Durigan
& Ratter, 2016). As more tropical old-growth grasslands
are lost, grassland restoration should increase in importance
as part of efforts to maintain biodiversity and ecosystem
services (Resende et al., 2013; Parr et al., 2014; Bond, 2016;
Fernandes, 2016).

Herein, we review current research and identify knowledge
gaps that must be filled to improve our understanding of the
resilience of tropical old-growth grasslands and to improve
our ability to restore tropical grassland biodiversity (Mace,
2014; Oliver et al., 2015). Indeed, a key part of restoration
planning is to consider the resilience of ecosystem states
to environmental change and management interventions
(Hobbs & Norton, 1996; Mitchell et al., 2000; Hirst et al.,
2003; Belyea, 2004; Lockwood & Samuels, 2004; Suding,
Gross & Houseman, 2004; White & Jentsch, 2004; Hobbs,
Jentsch & Temperton, 2007; Briske et al., 2008; Hobbs &
Suding, 2013). We restrict our review to grasslands of the
humid tropics and subtropics (<35◦ latitude) that receive
>750 mm mean annual precipitation (Fig. 1 and see online
Fig. S1); these are regions where climate can permit the
development of both grasslands and forests (Hirota et al.,
2011; Lehmann et al., 2011; Staver, Archibald & Levin,
2011). Whereas the herbaceous plant community of arid
tropical grasslands tend to be composed of annual and
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Fig. 1. Images of tropical and subtropical old-growth grasslands, savannas, and grassy woodlands with numbers on the images
corresponding to the numbered geographical locations shown in online Appendix S2 in File S1, Fig. S1). (1) Subtropical grasslands
(campos sulinos) in Rio Grande do Sul, Brazil. (2) Cerrado moist grasslands in São Paulo, Brazil. (3) Cangas grasslands, on ironstone
outcrops in the Iron Quadrangle, Brazil. (4) Campo rupestre grasslands, southeastern Brazil. (5) Campo rupestre grasslands a few months
after fire, southeastern Brazil. (6) Cerrado grasslands in Tocantins (vereda), Brazil. (7, 8) Cerrado in Goiás (campo sujo), Brazil. (9) Cerrado
grasslands in Tocantins (campo sujo and vereda), Brazil. (10) Cerrado in eastern lowland Bolivia. (11) Cattle in grassland-forest mosaic
Bolivia. (12) Prescribed fire in a subtropical pine savanna, southern USA. (13) Miombo, Uapaca kirkina savanna, Congo. (14) Katanga
copper outcrops, Congo. (15) Savanna in Kenya. (16–18) Savanna in Kruger National Park, South Africa. (19) Montane grasslands,
South Africa. (20) Coastal grasslands South Africa. (21) Tapia (Uapaca bojeri) savanna and quartzic grasslands on Ibity mountain,
Madagascar. (22, 23) Pandanus, cycads and Eucalyptus savanna, Northern Territory, Australia. (24) High-elevation savanna, southwest
China; also see Ratnam et al. (2016) for Asia.

short-lived perennial species, old-growth grasslands of the
humid tropics are typically composed of long-lived perennial
grasses and forbs (Bond & Zaloumis, 2016); for this reason,
our review focuses primarily on the ecology of perennial
grassland plants.

Unlike arid grasslands, where climate severely constrains
woody plant growth, the ecological characteristics and
biodiversity of humid tropical grasslands are maintained
through interactions among disturbances (i.e. fire and
herbivory) and soil characteristics (i.e. hydrology, soil
depth, toxic concentrations of heavy metals, Fig. 2; Langan
et al., 2017). In Figure 2, we depict how disturbance
frequency and edaphic constraints on tree growth interact
to determine where tropical old-growth grasslands occur.
Of particular note, this model (Fig. 2) highlights the
continuum from edaphic old-growth grasslands (i.e. on
soils that preclude the development of dense tree cover)

to disturbance-dependent old-growth grasslands (i.e. on soils
that can support either grassland or forest depending on
fire and herbivory). Disturbance-dependent grasslands are
of critical conservation and restoration importance because
of their susceptibility to exclusion of fire and herbivores
(Noss et al., 2015; Durigan & Ratter, 2016), as well as their
suitability for agriculture (i.e. on fertile soils and with ample
precipitation; Searchinger et al., 2015) or for mining (i.e.
metal-rich soils; Pena et al., 2017).

To offer a schematic representation of our findings,
we produced a conceptual model (Fig. 3) that integrates
ecological theory (depicted in Fig. 2) with restoration
activities for tropical grasslands. In Figure 3, we adapted
conceptual models of the novel ecosystem concept from
Hobbs et al. (2009) to tropical grasslands. The novel
ecosystem concept provides a framework for understanding
ecological resilience and alternative stable state theory in
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Fig. 2. Ecosystem state space occupied by tropical old-growth grasslands in regions where precipitation is sufficient for the
development of forests (Bond, Woodward & Midgley, 2005; Hirota et al., 2011; Staver et al., 2011). On most soil types, the existence
of disturbance-dependent grasslands is determined by interactions between soils and endogenous disturbances, especially fire
(Hoffmann et al., 2012; Murphy & Bowman, 2012; Noss, 2013; Lehmann et al., 2014; Hempson et al., 2015; Dantas et al., 2016;
Langan, Higgins & Scheiter, 2017). In edaphic grasslands, poor drainage (seasonally saturated or inundated soils), extremely low
moisture-holding capacity (shallow, rocky soils), or exceptionally low soil fertility preclude dense tree cover, even in the absence
of frequent disturbances (Noss, 2013; Le Stradic et al., 2018b). In forests, dense tree cover constrains fire frequency and grazer
abundance by limiting herbaceous plant productivity. The unlabelled state space between disturbance-dependent old-growth
grasslands and forests represents unstable vegetation (fire excluded, tree-encroached grassland) in transition between alternative
ecosystem states (Van Langevelde et al., 2003).

the context of restoration (Suding et al., 2004), with potential
to inform management decisions (Hulvey et al., 2013). In
this model, we also incorporated the old-growth grassland
concept to refer to the historical or reference ecosystems
that should guide tropical grassland restoration (Veldman
et al., 2015a). To support these conceptual models, below we
discuss the ecology of tropical old-growth grasslands, divided
into two sections on resilience and restoration.

II. RESILIENCE

(1) Endogenous disturbances and plant resprouting

Most tropical old-growth grasslands are highly resilient
to, and even dependent on, frequent fires and/or native

megafaunal herbivores, which maintain grassland plant
diversity and vegetation structure [i.e. low tree cover
(Coutinho, 1990; Bond & Keeley, 2005; Cingolani,
Noy-Meir & Díaz, 2005; Veldman et al., 2015a; Bond,
2016)]. These endogenous disturbances (sensu McIntyre &
Hobbs, 1999) are part of the evolutionary history and internal
dynamics of tropical grasslands and should not be confused
with the sorts of exogenous disturbances – often imposed
by humans – that cause shifts to alternative ecosystem states
(e.g. Fig. 3A, B).

Vegetation–fire and vegetation–herbivore feedbacks are
key to understanding endogenous disturbances in tropical
grasslands (e.g. Dantas & Pausas, 2013; Fill et al., 2015;
Hempson et al., 2015). Herbaceous plants, grasses in
particular (e.g. Simpson et al., 2016), produce the fine
fuel that promotes grassland flammability and provides
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Fig. 3. (A, B) Common ecosystem state transitions (i.e. degradation pathways), and (C, D) management interventions (i.e. potential
restoration pathways), for tropical grasslands. Disturbance-dependent grasslands (A, C, white box) and edaphic grasslands (B, D, grey
box) are depicted separately, due to differences in resilience and restoration potential (see Fig. 2). Numbers represent the qualitative
position of ecosystem states in relation to historical abiotic and biotic variables. Novel ecosystem states face strong biotic, abiotic
and/or socioeconomic barriers to restoration. Hybrid ecosystems may be restored toward the reference (old-growth grassland) state,
although full recovery likely requires many decades to centuries. Old-growth grasslands, the reference (historical) ecosystem states
(Veldman et al., 2015a), typically require frequent fire and/or domestic or native herbivores to maintain biotic composition and
abiotic conditions. We adapted these diagrams to tropical grasslands from Hobbs, Higgs & Harris (2009).

forage for grazing herbivores; in some savannas, highly
flammable tree litter (e.g. Pinus spp.; Platt et al., 2016)
is also critical to ecosystem flammability. In turn, fire
and herbivores interact to restrict tree cover and woody
encroachment that can otherwise limit the productivity of
the herbaceous plant community (e.g. Veldman, Mattingly &
Brudvig, 2013; Fig. 1). Many, if not most, tropical old-growth
grassland plants have evolved to endure disturbances
that remove aboveground biomass, including recurrent
fires and herbivory (Bond & Keeley, 2005; Veldman
et al., 2015a; Bond, 2016; Pausas, 2017) by investing
in underground storage organs (USOs; Simon et al., 2009;
Maurin et al., 2014; Pausas et al., 2018) and bud banks
(near or below the soil surface) that allow resprouting after

loss of aboveground biomass (Coutinho, 1990; Brewer &
Platt, 1994a,b; Appezzato-da-Glória et al., 2008; Fidelis, Lyra
& Pivello, 2013).

Appreciation for herbaceous plant regeneration strategies
is critical to understanding tropical old-growth grassland
resilience to endogenous versus exogenous disturbances.
Resprouting – i.e. vegetative regeneration of aboveground
organs from roots, stems, or persistent bud banks – not
seeding, is the principal manner by which grasslands
regenerate from fire and herbivory (Coutinho, 1990; Bond
& Midgley, 2001; Clarke et al., 2013). By contrast, severe
human-caused soil disturbances (e.g. tilling, surface mining)
destroy belowground plant organs, thus killing whole plants
and eliminating the possibility of resprouting (Kirkman
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et al., 2004; Ostertag & Robertson, 2007; Brudvig et al.,
2013; Zaloumis, 2013; Ilunga wa Ilunga et al., 2015; Vieira
et al., 2015). Reproduction from seed clearly plays a role in
old-growth grassland plant population dynamics (Keeley
& Fotheringham, 2000; Medina & Fernandes, 2007),
but few old-growth tropical grassland plant populations
rely on persistent seed banks for post-fire regeneration
(Duvigneaud & Denaeyer-De Smet, 1963; Overbeck et al.,
2005; Overbeck & Pfadenhauer, 2007; Kolbek & Alves,
2008; Lamont & Downes, 2011; Fidelis et al., 2012).
Instead, many species flower profusely (Conceição et al.,
2013; Fidelis & Blanco, 2014) after resprouting from bud
banks, and then produce seeds, most of which never
establish (Overbeck et al., 2006; Dayamba et al., 2008,
2010; Neves & Conceição, 2010; Fichino et al., 2012,
2016; Le Stradic et al., 2015; Delhaye et al., 2016; Fidelis,
Daibes & Martins, 2016).

Low rates of seedling establishment among tropical
old-growth grassland plants, even after fire, is perplexing,
given that fire-stimulated flowering likely evolved as a
means to focus investment in reproduction during post-fire
periods (Brewer et al., 2009), periods when otherwise limiting
nutrients are most available (e.g. phosphorus; Butler et al.,
2018) and conditions are most favourable for establishment
from seed (e.g. due to reduced competition; Myers &
Harms, 2011). Although poor establishment from seed
may simply be due to severe environmental constraints
on seedlings (e.g. water stress, in hot, sunny grasslands) or a
trade-off between investment in plant persistence and seed
production, studies among long-lived resprouting shrubs, in
recurrent-fire Mediterranean-type ecosystems, point towards
the accumulation of somatic mutations as a cause of low
fecundity (Lamont & Wiens, 2003). This hypothesis, which
remains to be tested in grasses and forbs of the humid tropics,
posits that since most somatic mutations result in deleterious
alleles, poor seed quality is an inherent cost of evolving the
capacity to resprout repeatedly over long periods of time
(Wiens & Slaton, 2012).

Whatever the reason for low seedling establishment,
the reliance of long-lived tropical old-growth grassland
plants on USOs and bud banks to survive fires and
herbivory (Bond & Midgley, 2001; Pausas et al., 2018),
and their contrasting low resilience to human-induced soil
disturbances, highlights the need to distinguish endogenous
disturbances that occur above ground (e.g. fire) from
exogenous disturbances that alter soil structure (e.g.
tilling). Whereas numerous studies deal with tropical
grassland resilience to endogenous disturbances (e.g. post-fire
recovery), few address community resilience to exogenous
disturbances. Keeping the endogenous versus exogenous
distinction in mind, below we discuss tropical old-growth
grassland resilience to various forms of environmental
change.

(2) Fire and grazing regime

Endogenous disturbances (i.e. fire, herbivory) are thought
to maintain tropical old-growth grassland plant diversity

by limiting competitively dominant herbaceous species,
preventing woody encroachment, stimulating reproduction,
and creating recruitment opportunities (Beckage & Stout,
2000; Overbeck et al., 2005; Brewer et al., 2009; Myers
& Harms, 2011; Fidelis et al., 2012; Müller et al., 2012;
Scott et al., 2012; Andrade et al., 2015; Abreu et al.,
2017). The resilience of tropical old-growth grasslands to
human-altered grazing and fire regimes is highly dependent
on ecosystem type and site-specific conditions. In general,
disturbance-dependent grasslands, with moderate to high
soil water and nutrient availability, can tolerate more intense
grazing for longer durations (Müller et al., 2012; Fedrigo et al.,
2018) relative to edaphic grasslands, where soil conditions
severely constrain plant productivity and regeneration
(Kolbek & Alves, 2008; Fig. 3A, B). Similarly, the frequency
of fire required to prevent woody encroachment (Hoffmann
et al., 2012) and maintain plant diversity (Veldman et al.,
2014) increases along resource availability gradients,
from resource-poor (edaphic) grasslands to resource-rich
(disturbance-dependent) grasslands (Fig. 2). Although the
frequency of fire required for the maintenance of grasslands
depends on soils and interactions with herbivores, both
disturbance-dependent and edaphic old-growth tropical
grasslands appear quite resilient to frequent fire (Andersen
et al., 2005). Indeed, Le Stradic et al. (2018b) found
that plant community composition in two distinct
edaphic grasslands did not differ with fire history, and
that after fire, both grasslands rapidly recovered their
aboveground biomass.

(3) Fire exclusion

Fire exclusion can eliminate many characteristic herbaceous
plant species from old-growth tropical grassland communities
due to litter accumulation or competitive exclusion by
dominant grasses, shrubs, or trees (Uys, Bond & Everson,
2004; Overbeck et al., 2005; Hiers et al., 2007; Fidelis et al.,
2012, 2013; Scott et al., 2012; Veldman et al., 2013; Abreu
et al., 2017; Fig. 3A). In the short term, fire exclusion can
lead to increased fire intensity, due to the accumulation
of biomass that would have historically been consumed in
more frequent, lower intensity fires (Batista et al., 2018). Over
longer time scales (i.e. many years to decades), fire exclusion
results in forest expansion (i.e. woody encroachment leading
to forest formation in former grassland; Oliveira & Pillar,
2004; Parr, Gray & Bond, 2012; Durigan & Ratter, 2016),
the loss of herbaceous grassland species (Hiers et al., 2007;
Brooks, Setterfield & Douglas, 2010; Parr et al., 2014; Abreu
et al., 2017; Fig. 3A, B), and reduced ecosystem flammability,
as flammable grasses are replaced by fire-impeding forest
tree species (Kane, Varner & Hiers, 2008; Kreye et al.,
2013; Veldman et al., 2013; Fill et al., 2015). Conversely,
human-initiated fire management (implemented to increase
visibility for hunting or to improve forage production),
which is highly dependent on the local socio-cultural
context (Alvarado et al., 2015), can result in fires that
are more frequent or intense compared to historical
fire regimes [e.g. through a change from cool burning,
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wet-season, lightning fires to hotter fires in the dry season
(Ramos-Neto & Pivello, 2000; Rissi et al., 2017; Alvarado,
Silva & Archibald, 2018)]. Given the high rates of woody
encroachment in grasslands globally, the high resprouting
capacity of old-growth grassland plants, and the dependence
of grassland biodiversity on fire, we contend that increased
fire frequencies are of far less concern for tropical grassland
resilience relative to fire exclusion (Andersen et al., 2005;
Parr et al., 2014; Durigan & Ratter, 2016). That said,
where altered fire regimes result in more-intense fires, they
can threaten fire-sensitive components (e.g. small groves
of trees) embedded in grassland landscapes (Trauernicht
et al., 2012; Coelho et al., 2018). Studies on the resilience
of tropical grasslands to these new fire regimes (Drewa,
Platt & Moser, 2002; Andersen et al., 2005; Ribeiro &
Figueira, 2011; Alvarado et al., 2012, 2014; Russell-Smith
et al., 2013; Fernandes, 2016) suggest that fire-management
decisions should account for landscape-scale heterogeneity
in vegetation and incorporate local knowledge to deliver
maximum social and ecological benefits.

(4) Livestock grazing

Old-growth grasslands vary widely in their resilience to
domestic livestock grazing (e.g. Cingolani et al., 2005).
Grasslands that occur on infertile soils and did not evolve
with megafaunal herbivores appear to be the least resilient
to domestic grazers (Fig. 3B) (Milchunas, Sala & Lauenroth,
1988; Cingolani et al., 2005). The campos rupestres of Brazil
are an example of such a system where shallow soils and
shallow-rooted plants are very sensitive to trampling (Kolbek
& Alves, 2008). In other grasslands, typically with higher
soil fertility, domestic livestock may be important to the
maintenance of biodiversity by functioning as a surrogate for
fire or by mimicking the effects of native herbivores (Boldrini
& Eggers, 1996; Blanco et al., 2007; Overbeck et al., 2007).
Indeed, literature on grasslands that are resilient to moderate
cattle grazing (Mcintyre, Heard & Martin, 2003; Fig. 3A,
C) attribute this resilience to a long evolutionary history
with either extant native megaherbivores (e.g. Africa) or
recently extinct Pleistocene megafauna (Frost, 1993; Ratter
et al., 1997; Miller, 2005; Overbeck et al., 2007; Noss, 2013).
Where wild herbivores and livestock co-occur, management
to minimise direct competition for forage can foster
positive (facilitative) interactions between wild and domestic
herbivores, while also maintaining grassland structural
heterogeneity and associated biodiversity (Riginos et al.,
2012; Fynn et al., 2016). Grazers can dramatically reduce
aboveground grass biomass, thereby altering grassland
fire spread and intensity (Trauernicht et al., 2013), thus
complicating the relationship between livestock and the
maintenance of grassland ecosystem functioning. Given that
elevated atmospheric carbon dioxide appears to be shifting
the competitive balance between C4 grasses and C3 trees and
shrubs (Collatz, Berry & Clark, 1998; Bond & Midgley, 2012),
and that grazers further alter grass–tree interactions through
effects on ecosystem flammability (Case & Staver, 2016),
more research is needed on the contribution of livestock as

a driver of woody encroachment in old-growth grasslands of
the humid tropics and subtropics.

(5) Overgrazing

Overgrazing occurs when grazing intensity, frequency, and
duration exceeds site-specific thresholds (i.e. shifting an
old-growth or hybrid grassland to a novel ecosystem state;
Fig. 3A, B). Such shifts are typically characterised by dra-
matic changes in both abiotic (e.g. soil compaction or erosion)
and biotic (e.g. species composition) components of ecosys-
tems (Fig. 3A, B). Among the most well-documented biotic
consequences of mismanaged livestock on plant communi-
ties, overgrazing can cause exotic grazer-tolerant grasses or
unpalatable native species to increase in abundance (Crowley
& Garnett, 1998; Fensham, 1998; Andrade et al., 2015).

Savanna tree cover, a common metric used in forestry and
remote-sensing studies, responds very differently to grazing
compared to the herbaceous plant community (Stevens
et al., 2016). As such, when planning grassland restorations,
it is necessary to look to the herbaceous plant community,
rather than just trees (Brudvig et al., 2014; Veldman, 2016).
Likewise, remote-sensing vegetation indices, such as nor-
malised difference vegetation index (NDVI) and enhanced
vegetation index (EVI), should be used with caution to detect
ecosystem state changes in tropical grasslands, because these
indices do not distinguish native from exotic grasses (but see
Zlinszky et al., 2015). That said, time-series remote-sensing
data on tree and shrub cover at global and regional scales
can be quite useful to monitor grazer-mediated woody
encroachment, particularly where grassland fire regimes
have been altered. Indeed, among key research needs, we
must determine how best to manage domestic livestock in
old-growth grasslands that occur where land-use policies
restrict fire [e.g. Cerrado and subtropical grasslands (Ratter
et al., 1997; Overbeck et al., 2007; Müller et al., 2012] and
determine better ways to use remote sensing to detect
changes in grassland plant communities (e.g. through
consideration of phenology; Wilsey, Martin & Kaul, 2018).

(6) Afforestation and invasive species

Afforestation, the establishment of tree plantations in
grasslands (de Abreu et al., 2011; Zaloumis & Bond, 2011,
2016; Veldman et al., 2015a,b), and exotic tree invasions
(de Abreu & Durigan, 2011) lead to the loss of herbaceous
grassland species due to competition with trees for light and
water as well as litter accumulation (Hiers et al., 2007; Brooks
et al., 2010; Parr et al., 2014; Fig. 3A, B). The magnitude of
plant community change with afforestation can vary widely
depending on tree density and whether or not fires are
excluded (Veldman et al., 2014). When tree density is high
and fires are excluded for long periods of time, herbaceous
plant communities decline substantially in diversity and cover
(Brudvig et al., 2014). Herbaceous plants can recolonise
following tree removal (Harrington, 2011; Torchelsen,
Cadenazzi & Overbeck, 2018), but post-afforestation
grasslands remain compositionally different from old-growth
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grasslands (Koch et al., 2016; Zaloumis & Bond, 2016). These
secondary grasslands, like those that form after agricultural
abandonment, tend to be dominated by ruderal species that
are either good dispersers or that emerge from persistent
seed banks. Such ruderal plant traits are markedly different
from the traits of species that are characteristic of tropical
old-growth grasslands (e.g. USOs; Veldman et al., 2015a).

Non-native grass invasion can represent a huge threat to
tropical grasslands, due to the negative impact caused by
exotic grasses on native grasses and forbs (e.g. Pivello, Shida
& Meirelles, 1999; Damasceno et al., in press; Dresseno
et al., in press). In addition to suppressing native species,
invasive grasses can lead to a high biomass accumulation,
with consequences for fire regimes, including increased fire
intensity (Mistry & Berardi, 2005; Setterfield et al., 2010;
Gorgone-Barbosa et al., 2015). Because invasive grasses can
alter fire regimes and native plant community composition,
they are one of the most challenging filters to overcome in
restoration projects. Where fires are frequent, exotic grasses
hamper native herbaceous plant establishment from seed
and increase the mortality of woody species (Hoffmann &
Haridasan, 2008; Mendonça et al., 2015). Yet in the absence
of fire, exotic-dominated tropical grasslands will become
low-diversity forests. Indeed, across a chronosequence of
abandoned pastures invaded by African grasses in Brazil,
Cava et al. (2018) found that herbaceous savanna plants
did not spontaneously regenerate and that fire exclusion
promoted the formation of low-diversity forests, which lacked
the historical old-growth savanna structure and species
composition. Further complicating matters, exotic grass
invasions can be promoted by cattle, which disperse seeds and
influence apparent competition between native and invasive
species (e.g. via soil compaction, selective grazing). Because
cattle ranchers often intentionally sow seeds of non-native
forage grasses in an attempt to increase grassland productivity
(Parsons, 1972), restoration ecologists must consider both
the biodiversity impacts of non-native species and the value
attributed to them by pastoralists.

(7) Exogenous soil disturbance

Tropical grassland resilience to tillage agriculture and surface
mining is extremely low, with plant community recovery
ranging from slow and incomplete to non-existent. In
subtropical Australia, Fensham et al. (2016) found, 60 years
after cultivation, that secondary grassland plant communities
had only 60% compositional similarity to nearby old-growth
grasslands. In subtropical North America, Kirkman et al.
(2004) found, 65 years after agriculture, that secondary pine
savannas still lacked many grass and forb species typical
of old-growth savanna. In South Africa, Zaloumis (2013)
found, 20 years after cultivation, that secondary grasslands
recovered only 25% of the species that occur in old-growth
grasslands. In Brazil, Le Stradic, Fernandes & Buisson
(2018a) found, 8 years after excavation for gravel, that quarry
sites had almost no grassland species, suggesting severe
recruitment limitation. In mined heavy-metal grasslands in
central Africa, both Faucon et al. (2011) and Ilunga wa Ilunga

et al. (2015) found, 60 years after mining for heavy metals, that
despite the proximity of seed sources, vegetation on mining
sites remained very different, both compositionally and
functionally from old-growth grasslands. Such exogenous
soil disturbances destroy both above- and belowground
vegetation, thus eliminating the potential for plants to persist
via resprouting (Fig. 3A, B). Because old-growth grassland
plants have evolved strategies (e.g. underground storage
organs) to survive repeated aboveground disturbances,
apparently at the cost of colonisation potential (Silcock
& Scattini, 2007; Veldman et al., 2015a; Silveira et al.,
2016), grasslands on former agricultural land fail to
recover their characteristic plant communities even after
many decades (Kirkman et al., 2004; Brudvig et al., 2013;
Vieira et al., 2015). Whereas recolonisation of characteristic
old-growth grassland species is extremely limited in
secondary grasslands (Silcock & Scattini, 2007; Ilunga wa
Ilunga et al., 2015; Veldman et al., 2015a; Silveira et al., 2016),
many non-native invasive and native weedy species are
rapid colonisers of post-agricultural grasslands due to their
higher germination and better ability to establish in disturbed
environments (Brudvig et al., 2014; Gorgone-Barbosa et al.,
2016a). These weedy species can limit the establishment
of desired old-growth grassland species (Zaloumis, 2013;
Gorgone-Barbosa, 2016; Le Stradic et al., 2016), posing a
huge hurdle to restoration (see also Section II.6).

In addition to killing plants, agriculture and mining can
alter soil conditions to such a degree that they are no longer
suitable for old-growth grassland plant communities. This
can occur due to several factors, including: loss of topsoil;
increased soil nutrient availability, a legacy of agricultural
fertilizers that favours dominant competitors (Andrade et al.,
2015; Koch et al., 2016); changes in soil heavy metal content
[e.g. copper, cobalt (Leteinturier, Baker & Malaisse, 1999;
Barbosa et al., 2010; Faucon et al., 2011)]; or depletion of
soil microbial communities (Bach et al., 2010). For all these
reasons, the species composition of secondary grasslands that
develops following agriculture or mining is very different from
that of old-growth grasslands (Faucon et al., 2011; Ilunga wa
Ilunga et al., 2015; Koch et al., 2016; Le Stradic et al., 2018a);
full grassland community recovery in such circumstances will
require many decades to several centuries (Veldman et al.,
2015a; Fernandes, 2016). Consequently, we suggest that
in many cases, secondary grasslands that form after aban-
donment of row crop agriculture, afforestation, or mining
operations qualify as novel ecosystems (Fig. 3A, B). Because
such novel ecosystems, by definition, cannot be restored to
their historical conditions, we further suggest that the con-
servation of existing old-growth tropical grasslands must be
a top priority in restoration planning (Veldman et al., 2015a).

III. RESTORATION

(1) Prescribed fire and tree cutting

Most knowledge on restoration of tropical grasslands using
prescribed fire comes from studies in Australia (Scott et al.,
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2012), Africa (e.g. Sawadogo, Tiveau & Nygård, 2005;
Savadogo et al., 2008, 2009; Dayamba et al., 2010; Smit
et al., 2016) and the southeastern USA (Provencher et al.,
2001; Walker & Silletti, 2006). The application of prescribed
fires can clearly contribute to the reduction of shrub or
tree cover and re-creation of historical vegetation structure
(i.e. scattered trees), but the role of fire in re-establishment
and maintenance of native herbaceous plant communities is
more complicated. For example, in Australia, reintroduction
of fire can restore open savanna vegetation structure, but not
the composition of the herbaceous layer (Scott et al., 2012).
Prescribed fires can also be combined with additional treat-
ments, including cutting and herbicide application to trees
to favour herbaceous groundcover, as well as seed additions
to reintroduce herbaceous plant species (Walker & Silletti,
2006). In all cases, for fire to be effective in restoration, suffi-
cient fuel must be present, a key challenge if the herbaceous
plant community is sparse, or flammable tree litter is lacking.

In some fire-excluded savannas in the southeastern
USA, tree cutting can be both unnecessary and expensive:
in a restoration experiment by Provencher et al. (2001),
positive effects on plant community recovery were due to
the restoration of fire regime, not reduction in tree cover.
Prescribed fires alone, if applied at the early stages of woody
encroachment, also seem to be sufficient to restore grasslands
of the North American Great Plains (Twidwell et al., 2013)
and the savannas of South Africa (Booysen & Tainton,
1984). In other cases, where tree cover is particularly dense,
such as fire-excluded savanna invaded by pines, tree cutting
(coupled with prescribed fire) is thought to be a prerequisite
for re-establishment of savanna plant communities (de Abreu
& Durigan, 2013). The extremely low recovery of Cerrado
grassland plant communities after pine invasion, regardless
of the restoration treatment applied (tree cutting, fire, litter
removal or a combination), led de Abreu & Durigan (2013)
to conclude that a combination of treatments to reduce
tree cover and pine litter must be accompanied by native
plant reintroduction, if there is to be any potential for plant
community restoration. We suggest that plant community
restoration efforts may additionally benefit from treatments
such as inoculation with soil microbial communities from
old-growth grasslands (Middleton & Bever, 2012), to restore
plant–soil interactions.

While fire effects have been studied in the Cerrado
(Hoffmann, 1996, 1998; Miranda, Bustamente & Miranda,
2002), fire management is only starting to be explored
more widely (Durigan & Ratter, 2016; Rissi et al., 2017;
Schmidt et al., 2017; Alvarado et al., 2018; Schmidt et al.,
2018) and mostly with a focus on responses of woody
plants (de Medeiros & Miranda, 2005). A particular gap
in restoration research, little is known about the role of
fire in the reproduction and establishment of savanna
grassland plants. Initial studies on heat shock simulated in the
laboratory suggest that fire does not break seed dormancy,
stimulate germination, or kill the seeds (Le Stradic et al.,
2015; Fichino et al., 2016; Zupo, Baeza & Fidelis, 2016),
whereas in field experiments, although many seeds died,

fire indirectly promoted germination of surviving seeds,
by reducing vegetation cover, which increased soil surface
temperature fluctuation (Daibes et al., 2017). In a laboratory
study of grasses of southern Africa, Ghebrehiwot et al. (2009)
found that exposure to liquid smoke increased germination
rates of five of six species; effects of elevated temperatures
had differing effects on seedling growth, suggesting that
elevated post-fire temperatures may favour establishment
of some species over others. More research is needed to
provide precise information on what constitutes optimal fire
management in plant-community restoration in different
local contexts, such as in the presence of invasive species
or unique soils (Driscoll et al., 2010). One aspect of fire
management in restoration is clear: without fire, grasslands
do not recover on abandoned agricultural lands. Instead,
they develop into low-diversity forests (Veldman et al., 2014;
Abreu et al., 2017; Cava et al., 2018).

(2) Invasive plant removal

In small-scale experiments (1–100 m2), controlling invasive
species can be successful when numerous restoration
techniques are combined, such as topsoil transfer, fire, and
manual weeding (Fig. 3C, D, Brooks et al., 2010; te Beest
et al., 2012; Castillioni, 2015; de Assis, 2017). Pilon, Buisson
& Durigan (2018) showed that in exotic grass-invaded
savanna, topsoil scraping combined with native topsoil trans-
fer effectively eliminated invasive grasses and reintroduced
herbaceous plants, including endemic species. Castillioni
(2015) and de Assis (2017) showed that herbicides should be
applied with great caution to control Urochloa decumbens, an
African grass that is invasive in Brazil, because herbicides
can impair native forbs and grasses. Moreover the use of
herbicides to control invasive plant species is controversial
because of toxicity to people and the environment (Witten-
berg & Cock, 2001). De Assis (2017) showed that manual
weeding can effectively control Urochloa decumbens; in the
same experiment, fire reduced the cost of manual weeding,
but fire alone was not sufficient to control grass invasion. In
southern Brazil, Thomas (2017) showed that topsoil removal
and herbicide application were effective in reducing cover of
Urochloa decumbens from over 40% to less than 5% 1 year after
treatment, but did not promote re-establishment of typical
grassland species, even when combined with hay transfer.
Establishment of an assemblage of competitive native
species after eradication of invasive species is thought to be
important to prevent reinvasion of restored sites (Cordero
et al., 2016). Unfortunately, despite successful invasive plant
control in small plots in short-term experiments, over the
longer term at larger spatial scales, restorations remain
prone to reinvasion (Sampaio et al., 2015).

Invasive grasses, such as Imperata cilindrica in the southern
USA (Platt & Gottschalk, 2001) and Andropogon gayanus in
Australia (Rossiter et al., 2003) can increase the frequency,
intensity, and spatial extent of grassland fires through
production of large quantities of fine fuel. Other invasive
species (e.g. Urochloa brizantha) can reduce ecosystem flamma-
bility relative to native-dominated grasslands, but this can
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depend on the fire season (Gorgone-Barbosa et al., 2015).
Although fire can be effective at controlling fire-sensitive
invasive species (Stevens & Beckage, 2009; te Beest et al.,
2012), fire can also promote invasive species that evolved
with frequent fires (Imperata cylindrica; Lippincott, 2000) or
indirectly promote invasive species by opening recruitment
sites, suitable for germination (Urochloa brizantha and Urochloa
decumbens; Gorgone-Barbosa et al., 2016a,b). The fire ecology
of invasive species should therefore be carefully considered
as part of fire management (Gorgone-Barbosa, 2016) in
tropical grassland restoration.

(3) Grazing management

In a review on the restoration of land degraded by overgraz-
ing, Papanastasis (2009) highlighted appropriate livestock
management as a vital tool for restoration of ecosystems
composed of species that evolved with large herbivores.
One cannot substitute native wildlife for livestock and
expect to maintain the same ecological processes and
plant communities; grazing and browsing patterns differ
among species and may change fire regimes, woody plant
cover, and biogeochemical cycling (Hempson, Archibald
& Bond, 2017). Whereas livestock are incompatible with
conservation of edaphic old-growth grasslands, in certain
disturbance-dependent old-growth grasslands, native wildlife
and/or livestock can be used to manage vegetation if manipu-
lated adequately (Fuhlendorf & Engle, 2001; Joubert, Pryke &
Samways, 2017; Fedrigo et al., 2018). Further, where land-use
policies restrict fire in disturbance-dependent grasslands,
domestic livestock can, in some cases, serve as an imperfect
surrogate for fire, by controlling the biomass of palatable
dominant plants (both native or exotic) and preventing shrub
and tree encroachment (Ratter et al., 1997; Overbeck et al.,
2007; Müller et al., 2012). Livestock can also create establish-
ment sites for rare plant species and can enhance the diversity
of habitats across landscapes (Lunt et al., 2007). Appropriate
use of livestock in tropical grassland restoration will require
improved knowledge of the ecological factors that influence
plant community responses to grazing and fire (Joubert et al.,
2017), as well as an understanding of the contribution of
livestock to local livelihoods (cessation of grazing may not be
feasible if alternative income sources are not available).

(4) Reintroduction of grasses and forbs

A common objective of grassland restoration is to reintroduce
plant species that have become locally extinct or to increase
the abundance of desirable plant species whose populations
declined due to altered disturbance regimes. In temperate
grassland restoration, the most common approach to plant
propagation is to sow seeds, either collected from existing
populations or cultivated specifically for restoration plantings
(Kiehl et al., 2010), or alternatively, to rely on seed dispersal
by wind or animals, as was historically done by pastoralists
(Poschlod et al., 1998). Seeds can be directly sown or
introduced via hay or soil transfers, accomplished by hand
or machine. Hay transfers involve cutting and collecting the

herbaceous layer of temperate grasslands at a time when
seeds are mature but have yet to disperse. This cut hay, with
attached seeds, is then spread at the restoration site. Soil
transfers involve collecting temperate grassland topsoil and
then spreading this soil, along with dormant seeds contained
in the soil, onto the restoration site.

For restoration of tropical grasslands, knowledge is
slowly increasing about the transfer (Le Stradic, Buisson &
Fernandes, 2014a; Le Stradic et al., 2016; Pilon et al., 2018)
and propagation of old-growth grassland species (Negreiros
et al., 2009; Oliveira et al., 2012; Le Stradic et al., 2014b;
Gomes et al., 2018), yet for most ecosystems such information
remains scarce or non-existent, particularly for herbaceous
species (Fernandes, 2016). Complicating matters, emerging
research on species of the Cerrado, Katanga copper outcrops
(Central Africa), and Queensland (Australia), suggests that
many graminoids – a functional group that is critical to
ecosystem flammability and livestock forage – produce few
seeds, much of which is of low quality (Silcock & Scattini,
2007; Boisson et al., 2015; Le Stradic et al., 2015; Kolb
et al., 2016; Dayrell et al., 2017). As such, the opportunities
for reintroduction and propagation via seed sowing, soil
transfer, and hay transfer, are often extremely limited (Le
Stradic et al., 2014a, 2016; but see Le Stradic et al., 2014b;
Sampaio et al., 2015; Gomes et al., 2018; Pilon et al., 2018).
When seeds are available, plant species introduction must
often be combined with an appropriate set of treatments
for them to establish (Wiseman et al., 2002; Sampaio et al.,
2015; Pilon et al., 2018). In sum, due to both knowledge
gaps and ecological hurdles to establishment from seed,
the reintroduction of tropical grassland species remains
technically difficult and expensive (Dayrell et al., 2016).

On a positive note, extensive research on the restoration
of subtropical grasslands of Australia and the southeastern
USA suggests that with significant investment in research and
seed harvesting, reintroductions of seeds, particularly when
coupled with other management techniques (e.g. prescribed
fire and tree cutting, see Section III.1), can help restore
grassland ecosystem services (e.g. livestock forage; Waters,
Whalley & Huxtable, 2001) and improve plant diversity
and community composition (Walker & Silletti, 2006). But,
even in these well-studied grasslands, full plant community
recovery to old-growth conditions cannot be achieved in
short periods of time and there remain huge hurdles
to the re-establishment of many species of conservation
concern (Aschenbach, Foster & Imm, 2010). Clearly, much
research on population ecology, especially the germination
and establishment requirements of native species of tropical
old-growth grasslands, is needed.

(5) Restoration after soil disturbance

Whereas for most temperate grasslands, common site
preparation includes topsoil manipulation, such as
ploughing, tilling, and soil transfer (Kiehl et al., 2010), in
tropical grasslands, even minor changes in soil structure are
likely to hamper natural regeneration from USOs and buried
buds. Soil preparation should therefore be used only on
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sites where repeated soil disturbance has already destroyed
the belowground bud bank. For example, Sampaio et al.

(2015) showed that plowing areas of Cerrado that were
previously cultivated or long-served as planted pastures can
help reduce invasive species density and increase native
species establishment. USOs are extremely difficult to uproot
and transfer without damage (Zaloumis, 2013; Le Stradic
et al., 2016) and can require long periods of time to develop
(Veldman et al., 2015a). Given the importance of bud banks
to the regeneration capacity of tropical grasslands (Fidelis
et al., 2014; Pausas et al., 2018), determining if and how
USOs may be transplanted is a key research need. Among
human land uses that severely affect tropical grasslands,
surface mining (including open-pit mining) has the most
profound local ecological impact (Sonter et al., 2014). As
a consequence, in many countries, mining companies are
highly encouraged, and often legally obligated, to restore the
ecosystems they destroy. Drawing on substantial wealth,
some mining companies plan ambitious and expensive
restoration projects, including full community translocation
(i.e. whole-turf translocation). Ideally, this technique involves
removing old-growth grassland turf (i.e. the aboveground
plant community and soil to a depth of ca. 40 cm), before
mining, and then transferring the turf to a nearby site where
the plant community and soil has been recently destroyed. At
the experimental scale (translocations of 0.04–200 m2), such
translocations can be successful in grasslands with shallow
soils (Le Stradic et al., 2016), but not for grasslands with
deeper soils; deeply rooted species and species with large
USOs are not amenable to translocation (Fig. 3C, D; Le
Stradic et al., 2016). Translocation faces similar limitations
as restoration following cultivation: deeply rooted species do
not survive translocation (Fig. 3C; Zaloumis, 2013). Despite
some success in an experimental context, the financial cost
for full community translocation is prohibitively high and
turf donor sites are destroyed in the process. Moreover, even
if some species survive transplantation, they fail to colonise
outside of transplanted plots (Le Stradic, 2012; Zaloumis,
2013). Such poor colonisation may be due to a combination
of factors, including unsuitable soil conditions outside the
turf plantation area (Kardol, Bezemer & Van Der Putten,
2009), low seed production, slow growth and recovery after
transplant damage to USOs and roots (Fahselt, 2007), and
bud dormancy induced by harsh transplant conditions (Le
Stradic, 2012; Zaloumis, 2013).

In addition to killing plants that rely on USOs and
buried buds, there are a variety of ways that soil-disturbing
land uses create conditions that are unsuitable for tropical
grassland plant communities. For example, fertilizers (N
and P) which remain in the soil after cultivation can
favour competitive or invasive species (Barbosa et al., 2010;
Andrade et al., 2015) and metal content (e.g. copper, cobalt,
aluminium) can be changed by mining (Leteinturier et al.,
1999; Faucon et al., 2011). Such novel soil conditions may
cause restoration plantings to fail, to take a very long time
to establish, or to require additional treatments, such as
liming (Shutcha et al., 2010) or metal additions [e.g. to

elevate copper concentration (Chipeng et al., 2009; Faucon
et al., 2012)]. Clearly, some soil amendments, especially
those containing expensive elements, cannot be economically
applied in all grasslands (Barbosa et al., 2010). Where heavy
metal concentrations are too high, Leteinturier et al. (1999,
2001a,b), Shutcha et al. (2010), and Boisson et al. (2015) found
that metals can be immobilised via phytostabilisation. Like
many other promising restoration experiments, scaling up
small plot-level studies of phytostabilisation to landscapes will
require additional studies. In temperate grasslands, research
has been carried out to try to reduce nutrients (N and P) in
soils in order to favour a high diversity of native species.
These N- and P-reduction techniques include: mowing
and removing the cut biomass (Maron & Jefferies, 2001);
carbon amendment to reduce N levels (Wilson & Gerry,
1995; Reever Morghan & Seastedt, 1999; Török et al., 2000;
Wilson, 2002); and topsoil removal as a restoration technique
to reduce both competition from the exotic seed bank and
soil N levels (Marrs, 2002; Wilson, 2002; Buisson et al.,
2006, 2008). More research on these potential techniques for
tropical grassland restoration is needed.

IV. CONCLUSIONS

(1) Whereas the destruction and degradation of tropical
and subtropical old-growth grasslands, including savannas
and grassy woodlands, can occur very rapidly, recovery of
their biodiverse plant communities occurs slowly, or not
at all (Veldman et al., 2015a). Overgrazing, fire exclusion,
and woody encroachment can replace tropical old-growth
grasslands with low-diversity swards of exotic grasses or dense
tree cover in a matter of years to a few decades (e.g. Cava
et al., 2018). Grassland conversion for agriculture, plantation
forestry, or mining not only destroys plant and animal
communities, but also profoundly changes chemical and
physical soil features (Brudvig et al., 2013; Le Stradic et al.,
2018a). Our review of the restoration literature suggests that
such human-induced environmental change often pushes
tropical grasslands across ecological thresholds to alternative
ecosystem states, from which recovery, where possible,
requires huge efforts and many decades to centuries.

(2) Among key priorities for restoration practice and
research, we must determine when state shifts in tropical
grasslands qualify as novel ecosystems, from which recovery is
ecologically impossible or socially impractical, as opposed to
hybrid grasslands, which are amenable to restoration toward
the old-growth state (Fig. 3; Hobbs et al., 2009; Hulvey et al.,
2013). Given the paucity of tropical grassland restoration
research, it is possible that some ecosystem states that we
currently perceive to be novel will, after future research and
technological innovation, prove capable of recovery towards
the old-growth state (Murcia et al., 2014). In the meantime
we suggest that recognition of novel ecosystems and their
different restoration scope (Fig. 3) can serve to highlight
the irreplaceability of tropical old-growth grasslands (Hobbs,
Higgs & Harris, 2014). Because ecological restoration is not
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a panacea for the recovery of tropical grassland biodiversity,
in the extensive areas where old-growth grasslands still
exist, environmental policies and ecosystem management
should prioritise grassland conservation, which must include
prescribed fire, wildfire, and/or megafaunal herbivory.

(3) Most tropical old-growth grasslands require frequent
endogenous disturbances (i.e. fire and herbivory) to maintain
plant diversity and prevent state shifts to low-diversity
forests (Fig. 2). Such disturbance-dependent grasslands,
common throughout the humid tropics, differ from much
rarer edaphic grasslands in key aspects of resilience
and restoration (Fig. 3). Of particular note, whereas
appropriate livestock management can be used to maintain
or restore disturbance-dependent old-growth grasslands,
livestock are typically incompatible with the conservation
of edaphic old-growth grasslands. Another difference is
that disturbance-dependent grasslands, on soils that are
favourable to plant growth, are far more susceptible
to conversion for agriculture than edaphic grasslands
on infertile or poorly drained soils; as such, cultivation
represents a far greater threat to disturbance-dependent
grasslands (Searchinger et al., 2015) relative to edaphic
grasslands. A final notable difference is that because
soil conditions in edaphic grasslands severely constrain
tree growth, fire exclusion does not result in the same
rapid, irreversible state shifts to forest that threaten
disturbance-dependent grasslands (Fig. 3A, B; Durigan &
Ratter, 2016). In sum, although disturbance-dependent and
edaphic grasslands have many similarities (e.g. herbaceous
communities of long-lived perennial plants), recognition of
relationships between grassland disturbance regimes and
edaphic conditions is critical to anticipating the outcomes of
environmental change (Fig. 3A, B) and planning restoration
for specific tropical grassland ecosystems (Fig. 3C, D).

(4) Unlike tropical forests, where cessation of human-
induced disturbance is often sufficient for restoration (i.e.
passive restoration; Meli et al., 2017), restoration of most
tropical grasslands (i.e. disturbance-dependent grasslands;
Figs 2 and 3A, C) must include ongoing, active management
to maintain endogenous disturbance regimes. Restoration
planners, in their consideration of disturbances and degrada-
tion in the tropics, should acknowledge that tropical grassland
species have evolved for millions of years with endogenous
disturbances that do not regularly occur in forests (i.e. fire and
grazing; Veldman, 2016); consequently, tropical grassland
communities are highly resilient to disturbances that remove
aboveground biomass, but not resilient to disturbances that
alter soils and destroy underground organs (Bond, 2016;
Fig. 3A, B). After repeated soil disturbance or afforestation,
tropical grassland restoration is severely limited by the poor
colonisation potential (e.g. low seed viability, limited disper-
sal) of plant species that are characteristic of old-growth
grasslands (Veldman et al., 2015a). Further complicating
restoration, grassland species that rely on bud banks for
persistence are not easily transplanted. Exotic forage grasses,
which are commercially available and easy to establish,
should never be sown as part of tropical grassland restoration.

(5) Although many of the techniques used to actively
restore forests or temperate grasslands are ecologically
inappropriate (e.g. fire exclusion; Ratnam et al., 2011) or
ineffective when applied to tropical grasslands (e.g. hay or
topsoil transfer; Le Stradic et al., 2014a, 2016; Pilon et al.,
2018), there are several management tools that do offer hope
for ecosystem recovery where degradation is not irreversible
(i.e. hybrid grasslands; Fig. 3C, D). Despite this hope, a great
deal of confusion still exists over the activities that constitute
ecological restoration (Suding et al., 2015), particularly in
the context of forest and landscape restoration (Brancalion
& Chazdon, 2017) as applied to tropical savannas and
grassland–forest mosaics (Veldman et al., 2015b). Through
this review, we have sought to reduce this confusion by
offering clarity about the distinct conservation values and
ecological attributes of tropical grasslands that require a set
of restoration tools that are distinct from the tools applied
for forest restoration. To summarise, the tools of tropical
grassland restoration include: (1) prescribed fire; (2) appro-
priate management of livestock and wild herbivores; (3) tree
cutting and shrub removal; (4) invasive species control; and
(5) reintroduction of native grasses and forbs, via seeding or
transplants. Finally, because most tropical old-growth grass-
lands are dependent on recurring endogenous disturbances,
restoration efforts must plan for the long-term maintenance
of fire regimes, megafauna herbivory, or both, to prevent
woody encroachment from leading to forest expansion.
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